
PICBASIC PRO™ Compiler



COPYRIGHT NOTICE

Copyright ©2008 microEngineering Labs, Inc.
All rights reserved.

This manual describes the use and operation of the PICBASIC PRO™
Compiler from microEngineering Labs, Inc.  Use of the PICBASIC PRO
Compiler without first obtaining a license is a violation of law.  To obtain a
license, along with the latest version of the product and documentation,
contact microEngineering Labs, Inc.

Publication and redistribution of this manual over the Internet or in any
other medium without prior written consent is expressly forbidden.  In all
cases this copyright notice must remain intact and unchanged.

microEngineering Labs, Inc.
Box 60039
Colorado Springs CO 80960-0039
(719) 520-5323
(719) 520-1867 fax
email: support@melabs.com
web: www.melabs.com

TRADEMARKS

BASIC Stamp is a trademark of Parallax, Inc.
PICBASIC, PICBASIC PRO, PICPROTO and EPIC are trademarks of
Microchip Technology Inc. in the U.S.A. and other countries.
PIC is a registered trademarks of Microchip Technology Inc. in the U.S.A.
and other countries.



PICBASIC PRO™ Compiler

microEngineering Labs, Inc.

1/08





PICBASIC PRO Compiler

i

TABLE OF CONTENTS

1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.  The PIC® MCUs . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2.  About This Manual . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3.  Sample Programs . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.  Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.  Software Installation . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.  Your First Program . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.  Program That MCU . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.  It’s Alive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5.  I’ve Got Troubles . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5.1.  PIC® MCU Specific Issues . . . . . . . . . . . . . . . . 10
2.5.2.  PICBASIC and BASIC Stamp Compatiblity . . . 13
2.5.3.  Code Crosses Page Boundary Messages . . . . 13
2.5.4.  Out of Memory Errors . . . . . . . . . . . . . . . . . . . . 13
2.6.  Coding Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.1.  Comments . . . . . . . . . . . . . . . . . . . . . . 13
2.6.2.  Pin and Variable Names . . . . . . . . . . . 14
2.6.3.  Labels . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.4.  GOTO . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.  Command Line Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.  Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.  Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1.  Option -A . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2.  Option -C . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3.  Option -E . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.4.  Option -H or -? . . . . . . . . . . . . . . . . . . . 19
3.2.5.  Option -L . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.6.  Option -O . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.7.  Option -P . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.8.  Option -S . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.9.  Option -V . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.10.  Option -Z . . . . . . . . . . . . . . . . . . . . . . 20

4.  PICBASIC PRO Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.  Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.  Line Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.  Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.  Aliases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5.  Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



PICBASIC PRO Compiler

ii

4.6.  Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.7.  Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.8.  Numeric Constants . . . . . . . . . . . . . . . . . . . . . . . 26
4.9.  String Constants . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.10.  Ports and Other Registers . . . . . . . . . . . . . . . . . 27
4.11.  Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.12.  Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.13.  Multi-statement Lines . . . . . . . . . . . . . . . . . . . . 30
4.14.  Line-extension Character . . . . . . . . . . . . . . . . . 30
4.15.  INCLUDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.16.  DEFINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.17.  Math Operators . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.17.1.  Multiplication . . . . . . . . . . . . . . . . . . . 34
4.17.2.  Division . . . . . . . . . . . . . . . . . . . . . . . 35
4.17.3.  Shift . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.17.4.  ABS . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.17.5.  COS . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.17.6.  DCD . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.17.7.  DIG . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.17.8.  DIV32 . . . . . . . . . . . . . . . . . . . . . . . . 37
4.17.9.  MAX and MIN . . . . . . . . . . . . . . . . . . 38
4.17.10.  NCD . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.17.11.  REV . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.17.12.  SIN . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.17.13.  SQR . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.17.14.  Bitwise Operators . . . . . . . . . . . . . . 39

4.18.  Comparison Operators . . . . . . . . . . . . . . . . . . . 40
4.19.  Logical Operators . . . . . . . . . . . . . . . . . . . . . . . 40

5.  PICBASIC PRO Statement Reference . . . . . . . . . . . . . . . . 41
5.1.  @ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.  ADCIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.  ASM..ENDASM . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4.  BRANCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.5.  BRANCHL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.6.  BUTTON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.7.  CALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.8.  CLEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.9.  CLEARWDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.10.  COUNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.11.  DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.12.  DEBUG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.13.  DEBUGIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



PICBASIC PRO Compiler

iii

5.14.  DISABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.15.  DISABLE DEBUG . . . . . . . . . . . . . . . . . . . . . . . 61
5.16.  DISABLE INTERRUPT . . . . . . . . . . . . . . . . . . . 62
5.17.  DTMFOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.18.  EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.19.  ENABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.20.  ENABLE DEBUG . . . . . . . . . . . . . . . . . . . . . . . 66
5.21.  ENABLE INTERRUPT . . . . . . . . . . . . . . . . . . . . 67
5.22.  END . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.23.  ERASECODE . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.24.  FOR..NEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.25.  FREQOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.26.  GOSUB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.27.  GOTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.28.  HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.29.  HPWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.30.  HSERIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.31.  HSERIN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.32.  HSEROUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.33.  HSEROUT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.34.  I2CREAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.35.  I2CWRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.36.  IF..THEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.37.  INPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.38.  LCDIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.39.  LCDOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.40.  {LET} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.41.  LOOKDOWN . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.42.  LOOKDOWN2 . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.43.  LOOKUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.44.  LOOKUP2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.45.  LOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.46.  NAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.47.  ON DEBUG . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.48.  ON INTERRUPT . . . . . . . . . . . . . . . . . . . . . . . 107
5.49.  OUTPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.50.  OWIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.51.  OWOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.52.  PAUSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.53.  PAUSEUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.54.  PEEK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.55.  PEEKCODE . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.56.  POKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



PICBASIC PRO Compiler

iv

5.57.  POKECODE . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.58.  POT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.59.  PULSIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.60.  PULSOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.61.  PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.62.  RANDOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.63.  RCTIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.64.  READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.65.  READCODE . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.66.  REPEAT..UNTIL . . . . . . . . . . . . . . . . . . . . . . . 127
5.67.  RESUME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.68.  RETURN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.69.  REVERSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.70.  SELECT CASE . . . . . . . . . . . . . . . . . . . . . . . . 131
5.71.  SERIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.72.  SERIN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.73.  SEROUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.74.  SEROUT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.75.  SHIFTIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.76.  SHIFTOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.77.  SLEEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.78.  SOUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.79.  STOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.80.  SWAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.81.  TOGGLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.82.  USBIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.83.  USBINIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.84.  USBOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.85.  USBSERVICE . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.86.  WHILE..WEND . . . . . . . . . . . . . . . . . . . . . . . . 161
5.87.  WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.88.  WRITECODE . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.89.  XIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.90.  XOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.  Structure of a Compiled Program . . . . . . . . . . . . . . . . . . . 169
6.1.  Target Specific Headers . . . . . . . . . . . . . . . . . . 169
6.2.  The Library Files . . . . . . . . . . . . . . . . . . . . . . . . 169
6.3.  PICBASIC PRO Generated Code . . . . . . . . . . . 170
6.4.  .ASM File Structure . . . . . . . . . . . . . . . . . . . . . . 170



PICBASIC PRO Compiler

v

7.  Other PICBASIC PRO Considerations . . . . . . . . . . . . . . . 171
7.1.  How Fast is Fast Enough? . . . . . . . . . . . . . . . . 171
7.2.  Configuration Settings . . . . . . . . . . . . . . . . . . . . 173
7.3.  RAM Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.4.  Reserved Words . . . . . . . . . . . . . . . . . . . . . . . . 175
7.5.  Life After 2K . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.6.  12-Bit Core Considerations . . . . . . . . . . . . . . . . 176

8.  Assembly Language Programming . . . . . . . . . . . . . . . . . . 179
8.1.  Two Assemblers - No Waiting . . . . . . . . . . . . . . 179
8.2.  Programming in Assembly Language . . . . . . . . 180
8.3.  Placement of In-line Assembly . . . . . . . . . . . . . 181
8.4.  Another Assembly Issue . . . . . . . . . . . . . . . . . . 182

9.  Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
9.1.  Interrupts in General . . . . . . . . . . . . . . . . . . . . . 183
9.2.  Interrupts in BASIC . . . . . . . . . . . . . . . . . . . . . . 184
9.3.  Interrupts in Assembler . . . . . . . . . . . . . . . . . . . 186

10.  PICBASIC PRO / PICBASIC / Stamp Differences . . . . . 191
10.1.  Execution Speed . . . . . . . . . . . . . . . . . . . . . . . 191
10.2.  Digital I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
10.3.  Low Power Instructions . . . . . . . . . . . . . . . . . . 192
10.4.  Missing PC Interface . . . . . . . . . . . . . . . . . . . . 192
10.5.  No Automatic Variables . . . . . . . . . . . . . . . . . . 192
10.6.  No Nibble Variable Types . . . . . . . . . . . . . . . . 193
10.7.  No DIRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
10.8.  No Automatic Zeroing of Variables . . . . . . . . . 193
10.9.  Math Operators . . . . . . . . . . . . . . . . . . . . . . . . 193
10.10.  [ ] Versus ( ) . . . . . . . . . . . . . . . . . . . . . . . . . . 195
10.11.  ABS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
10.12.  DATA, EEPROM, READ and WRITE . . . . . . 195
10.13.  DEBUG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
10.14.  FOR..NEXT . . . . . . . . . . . . . . . . . . . . . . . . . . 196
10.15.  GOSUB and RETURN . . . . . . . . . . . . . . . . . 196
10.16.  I2CREAD and I2CWRITE . . . . . . . . . . . . . . . 196
10.17.  IF..THEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
10.18.  LOOKDOWN and LOOKUP . . . . . . . . . . . . . 197
10.19.  MAX and MIN . . . . . . . . . . . . . . . . . . . . . . . . 197
10.20.  SERIN and SEROUT . . . . . . . . . . . . . . . . . . 197
10.21.  SLEEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198



PICBASIC PRO Compiler

vi

Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Serin2/Serout2 Mode Examples . . . . . . . . . . . . . . . . 199

Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Defines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Reserved Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Appendix D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
ASCII Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Appendix E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . 209



PICBASIC PRO Compiler

1

1.  Introduction

The PICBASIC PRO™ Compiler (or PBP) makes it even quicker and
easier for you to program Microchip Technology’s powerful PIC®

microcontrollers (MCUs).  The English-like BASIC language is much
easier to read and write than assembly language.

The PICBASIC PRO Compiler is “BASIC Stamp II like” and has most of
the libraries and functions of both the BASIC Stamp I and II.  Being a true
compiler, programs execute much faster and may be longer than their
Stamp equivalents.

PBP is not quite as compatible with the BASIC Stamps as our original
PICBASIC™ Compiler is with the BS1.  Decisions were made that we
hope improve the language overall.  One of these was to add a real
IF..THEN..ELSE..ENDIF instead of the IF..THEN(GOTO) of the
Stamps.  These differences are spelled out later in this manual.

PBP defaults to create files that run on a PIC16F84 clocked at 4MHz.
Only a minimum of other parts are necessary: 2 22pf capacitors for the
4MHz crystal, a 4.7K pull-up resistor tied to the /MCLR pin and a suitable
5- volt power supply.  PIC MCUs other than the 16F84, as well as
oscillators of frequencies other than 4MHz, may be used with the
PICBASIC PRO Compiler.

1.1.  The PIC® MCUs

The PICBASIC PRO Compiler produces code that may be programmed
into a wide variety of PIC microcontrollers having from 8 to 100 pins and
various on-chip features including A/D converters, hardware timers and
serial ports.

The current version of the PICBASIC PRO Compiler supports most of the
Microchip Technology PIC MCUs, including the 12-bit core, 14-bit core
and both 16-bit core series, the PIC17Cxxx and PIC18Xxxxx devices, as
well as the Micromint PicStics.  Limited support has been added for PIC
MCUs based on the original 12-bit core.  Support is limited as the 12-bit
core PIC MCUs have a limited set of resources including a smaller stack
and smaller code page size.  See the README.TXT file for the very latest
PIC MCU support list.

For general purpose PIC MCU development using the PICBASIC PRO
Compiler, the PIC12F683, 16F690, 16F88, 16F876A, 16F877A, 18F2620



PICBASIC PRO Compiler

2

and 18F4620 are the current PIC MCUs of choice.  These
microcontrollers use flash technology to allow rapid erasing and
reprogramming to speed program debugging.  With the click of the
mouse in the programming software, the flash PIC MCU can be instantly
erased and then reprogrammed again and again.  Other PIC MCUs in the
PIC12C5xx, 12C67x, 14000, 16C4xx, 16C5x, 16C55x, 16C6xx, 16C7xx,
16C9xx, 17Cxxx and 18Cxxx series are either one-time programmable
(OTP) or have a quartz window in the top (JW) to allow erasure by
exposure to ultraviolet light for several minutes.

Most PIC12F6xx, 16F6xx, 16F8xx and 18Fxxxx devices also contain
between 64 and 1024 bytes of non-volatile data memory that can be used
to store program data and other parameters even when the power is
turned off.  This data area can be accessed simply by using the
PICBASIC PRO Compiler’s READ and WRITE commands.  (Program
code is always permanently stored in the PIC MCU’s code space whether
the power is on or off.)

By using a flash PIC MCU for initial program testing, the debugging
process may be sped along.  Once the main routines of a program are
operating satisfactorily, a PIC MCU with more capabilities or expanded
features of the compiler may be utilized.

While many PIC MCU features will be discussed in this manual, for full
PIC MCU information it is necessary to obtain the appropriate PIC MCU
data sheets or the CD-ROM from Microchip Technology.  Refer to
Appendix F for contact information.

1.2.  About This Manual

This manual cannot be a full treatise on the BASIC language.  It
describes the PICBASIC PRO Compiler instruction set and provides
examples on how to use it.  If you are not familiar with BASIC
programming, you should acquire a book on the topic.  Or just jump right
in.  BASIC is designed as an easy-to-use language.  Try a few simple
commands to see how they work.  Or start with the examples and then
build on them.

The next section of this manual covers installing the PICBASIC PRO
Compiler and writing your first program.  Following is a section that
describes different options for compiling programs.



PICBASIC PRO Compiler

3

Programming basics are covered next, followed by a reference section
listing each PICBASIC PRO command in detail.  The reference section
shows each command prototype, a description of the command and
some examples.  Curly brackets, {}, indicate optional parameters.

The remainder of the manual provides information for advanced
programmers - the inner workings of the compiler.

1.3.  Sample Programs

Example programs to help get you started can be found in the SAMPLES
subdirectory.  Additional example programs can be found in the sample
programs section of the microEngineering Labs, Inc. web site.



PICBASIC PRO Compiler

4



PICBASIC PRO Compiler

5

2.  Getting Started

2.1.  Software Installation

The PICBASIC PRO Compiler files are compressed into a setup file on
the included disk.  They must be installed before use.

To install the software, execute SETUP.EXE on the disk and follow the
setup instructions presented.

All of the necessary files will be installed to a subdirectory named C:\PBP
on the hard drive.  The uncompressed README.TXT file has the latest
information about the PICBASIC PRO Compiler.

2.2.  Your First Program

For operation of the PICBASIC PRO Compiler you will use the included
IDE or a text editor or word processor for creation of your program source
file, some sort of PIC MCU programmer such as our EPIC
Programmer™, melabs Serial Programmer or melabs U2 Programmer,
and the PICBASIC PRO Compiler itself.  Of course you also need a PC
to run it all on.

The sequence of events goes something like this:

First, start the included or one of the other available IDEs/editors.  Select
the PIC MCU you intend to use from the IDE’s drop-down list.  Next,
create the BASIC source file for the program or open one of the BASIC
source files included with PBP.  The source file name usually  (but isn’t
required to) ends with the extension .BAS.

The text file that is created must be pure ASCII text.  It must not contain
any special codes that might be inserted by word processors for their own
purposes.  You are usually given the option of saving the file as pure
DOS or ASCII text by most word processors.

The following program provides a good first test of a PIC MCU in the real
world.  You may type it in or you can simply copy it from the SAMPLES
subdirectory included with the PICBASIC PRO Compiler.  The file is
named BLINK.BAS.  The BASIC source file should be created in or
moved to the same directory where the PBP.EXE file is located.



PICBASIC PRO Compiler

6

‘ Example program to blink an LED connected to PORTB.0
about once a second

loop: High PORTB.0 ‘ Turn on LED
Pause 500 ‘ Delay for .5 seconds

Low PORTB.0 ‘ Turn off LED
Pause 500 ‘ Delay for .5 seconds

Goto loop ‘ Go back to loop and blink
LED forever

End

Once you are satisfied that the program you have written will work
flawlessly, you can execute the PICBASIC PRO Compiler by clicking on
the IDE’s build or compile button.  If you are using DOS, enter PBP
followed by the name of your text file at a DOS prompt.  For example, if
the text file you created is named BLINK.BAS, at the DOS command
prompt enter:

PBP blink

If you don’t tell it otherwise, the PICBASIC PRO Compiler defaults to
creating code for the PIC16F84.  To compile code for PIC MCUs other
than the PIC16F84, simply use the -P command line option described
later in the manual to specify a different target processor.  For example, if
you intend to run the above program, BLINK.BAS, on a PIC16F877,
compile it using the command:

PBP -p16f877 blink

The compiler will display an initialization (copyright) message and
process your file.  If it likes your file, it will create an assembler source
code file (in this case named BLINK.ASM) and automatically invoke an
assembler (PM or MPASMWIN) to complete the task.  If all goes well, the
final PIC MCU code file will be created (in this case, BLINK.HEX).  If you
have made the compiler unhappy, it will issue a string of errors that will
need to be corrected in your BASIC source file before you try compilation
again.

To help ensure that your original file is flawless, it is best to start by
writing and testing a short piece of your program, rather than writing an
entire 100,000 line monolith all at once and then trying to debug it from
end to end.



PICBASIC PRO Compiler

7

2.3.  Program That MCU

There are two steps left - putting your compiled program into the PIC
microcontroller and testing it.

The PICBASIC PRO Compiler generates standard 8-bit Merged Intel
HEX (.HEX) files that may be used with any PIC MCU programmer
including our EPIC Programmer™, melabs Serial Programmer and
melabs U2 Programmer.  PIC MCUs cannot be programmed with BASIC
Stamp programming cables.

The following is an example of how a PIC MCU may be programmed
using one of our programmers.

Make sure there are no PIC MCUs installed in the programmer
programming socket or any attached adapters.

If you are using the EPIC Programmer, hook it to the PC parallel printer
port using a DB25 male to DB25 female printer extension cable.

If you are using the melabs Serial Programmer, hook it to the PC serial
port using a DB9 male to DB9 female serial cable or hook it to the USB
port using a USB to serial adapter.

If you are using the melabs U2 Programmer, plug it into the PC USB port
using a USB cable.

Plug the AC adapter into the wall and then into the programmer (or attach
2 fresh 9-volt batteries to the EPIC Programmer and connect the “Batt
ON” jumper.  Using an AC adapter instead of batteries is highly
recommended.)  A separate power supply is not required for the melabs
U2 Programmer.

The LED(s) on the EPIC Programmer may be on or off at this point.  Do
not insert a PIC MCU into the programming socket when an LED is on or
before the programming software has been started.  The LED should
glow green on the melabs Serial or U2 Programmer indicating it is ready.

Launch the programmer software.  Once the programming screen is
displayed, select the PIC MCU you will be programming.  Next, use the
mouse to click on Open file.  Select BLINK.HEX or another file you would
like to program into the PIC MCU from the dialog box.



PICBASIC PRO Compiler

8

Once the file has been loaded, you can look at the Code or Memory
window to see your PIC MCU program code.  You should also look at the
Configuration window and verify that it is as desired before proceeding.

In general, the Oscillator should be set to XT for a 4MHz crystal and the
Watchdog Timer should be set to ON for PICBASIC PRO programs. 
Most importantly, Code Protect must be OFF when programming any
windowed (JW) PIC MCUs.  You may not be able to erase a windowed
PIC MCU that has been code protected.  You can find more information
on these configuration fuses in the Microchip data sheet for the device
you are using.

When it all looks marvelous, it is time to insert a PIC MCU into the
programming socket and click on Program.  The PIC MCU will first be
checked to make sure it is blank and then your code will be programmed
into it.

Once the programming is complete and the LED is no longer red, it is
time to test your program.

2.4.  It’s Alive

The sample schematic below gives you an idea of the few things that
need to be connected to the PIC MCU to make it work.  Basically, all you
need is a pull-up resistor on the /MCLR line, a 4MHz crystal with 2
capacitors, and some kind of 5-volt power supply.  We have added an
LED and resistor to provide the output from the BLINK program.



PICBASIC PRO Compiler

9

Build and double check this simple circuit on a protoboard and plug in the
PIC MCU you just programmed.  Our line of PICPROTO™ prototyping
boards is perfect for this kind of thing.

Connect a power supply.  Your PIC MCU should come to life and start
blinking the LED about once a second.  If it does not blink, check all of
the connections and make sure 5 volts is present at the appropriate pins
on the PIC MCU.

From these simple beginnings, you can create your own world-
conquering application.

2.5.  I’ve Got Troubles

The most common problems with getting PIC MCUs running involve
making sure the few external components are of the appropriate value
and properly connected to the PIC MCU.  Following are some hints to
help get things up and running.

Make sure the /MCLR pin is connected to 5 volts either through some
kind of voltage protected reset circuit or simply with a 4.7K resistor.  If
you leave the pin unconnected, its level floats around and sometimes the
PIC MCU will work but usually it won’t.  The PIC MCU has an on-chip
power-on-reset circuit so in general just an external pull-up resistor is
adequate.  But in some cases the PIC MCU may not power up properly
and an external circuit may be necessary.  See the Microchip data books
for more information.

Be sure you have a good crystal with the proper value capacitors
connected to it.  Capacitor values can be hard to read.  If the values are
off by too much, the oscillator won’t start and run properly.  A 4MHz
crystal with two 22pf (picofarad) ceramic disk capacitors is a good start
for most PIC MCUs.  Once again, check out the Microchip data books for
additional thoughts on the matter.

Make sure your power supply is up to the task.  While the PIC MCU itself
consumes very little power, the power supply must be filtered fairly well. 
If the PIC MCU is controlling devices that pull a lot of current from your
power supply, as they turn on and off they can put enough of a glitch on
the supply lines to cause the PIC MCU to stop working properly.  Even an
LED display can create enough of an instantaneous drain to momentarily
clobber a small power supply (like a 9-volt battery) and cause the PIC
MCU to lose its mind.



PICBASIC PRO Compiler

10

Start small.  Write short programs to test features you are unsure of or
might be having trouble with.  Once these smaller programs are working
properly, you can build on them.

Try doing things a different way.  Sometimes what you are trying to do
looks like it should work but doesn’t, no matter how hard you pound on it. 
Usually there is more than one way to skin a program.  Try approaching
the problem from a different angle and maybe enlightenment will ensue.

2.5.1.  PIC® MCU Specific Issues

It is imperative that you read the Microchip data sheet for the PIC

MCU device you are using.  Some devices have features that can
interfere with expected pin operations.  Many PIC MCUs have analog
comparators on PORTA or another port.  When these chips start up,
PORTA is set to analog mode.  This makes the pin functions on PORTA
work in an unexpected manner.  To change the pins to digital, simply add
the line:

CMCON = 7

near the front of your program.

The register names of some PIC MCUs may be different than the
examples above (or below).  Be sure to check the Microchip data sheet
for the device you are using so that you can choose the appropriate
register name.

Any PIC MCU with analog inputs, such as the PIC16C7xx, PIC16F87x
and PIC12C67x series devices, will come up in analog mode.  You must
set them to digital if that is how you intend to use them:

ADCON1 = 7

For many of the PIC MCUs, including the PIC12F675 and 16F676, a
different register must be set instead:

ANSEL = 0

While these settings work for many devices, you will need to check the
data sheet for the specific device to verify the exact settings.



PICBASIC PRO Compiler

11

Another example of potential disaster is that PORTA, pin 4 exhibits
unusual behavior when used as an output.  This is because the pin has
an open drain output rather than the usual bipolar stage of the rest of the
output pins.  This means it can pull to ground when set to 0, but it will
simply float when set to a 1, instead of going high.  To make this pin act
in the expected manner, add a pull-up resistor between the pin and 5
volts.  The value of the resistor may be between 1K and 33K, depending
on the drive necessary for the connected input.  This pin acts as any
other pin when used as an input.

Some PIC MCUs, such as the PIC16F62x(A), 87x(A) and PIC18Fxxxx
allow low-voltage programming.  This function takes over one of the
PORTB pins and can cause the device to act erratically if this pin is not
pulled low.  It is best to make sure that low-voltage programming is not
enabled at the time the PIC MCU is programmed.

All of the PIC MCU pins are set to inputs on power-up.  If you need a pin
to be an output, set it to an output before you use it, or use a PICBASIC
PRO command that does it for you.  Once again, review the PIC MCU
data sheets to become familiar with the idiosyncrasies of a particular part.

There is no data direction (TRIS) register for PORTA on PIC17Cxxx
devices.  Therefore, commands that rely on the TRIS register for their
operation, such as I2CREAD and I2CWRITE, may not be used on
PORTA.

The name of the port pins on most 8-pin PIC12X devices is GPIO.  The
name for the TRIS register is TRISIO.

GPIO.0 = 1
TRISIO = %101010

On the PIC12C5xx and 12CE5xx devices, pin GPIO.2 is forced to an
input regardless of the setting of the TRIS register.  To allow this pin to
be used as a standard I/O pin, add the following line to the beginning of
the program:

OPTION_REG.5 = 0

As hinted at above, the name of the OPTION register that PICBASIC
PRO uses for all PIC MCUs is OPTION_REG.

Certain PIC MCUs have on-chip non-volatile data storage implemented
like an I2C interfaced serial EEPROM.  READ and WRITE will not work on



PICBASIC PRO Compiler

12

devices with on-chip I2C interfaced serial EEPROM like the PIC12CE51x,
12CE67x and 16CE62x parts.  Use the I2CREAD and I2CWRITE
instructions instead.

Some PIC MCUs, such as the PIC12C67x, 12CE67x, 12F6xx and
16F6xx, have on-chip RC oscillators.  Some of these devices contain an
oscillator calibration factor in the last location of code space.  The on-chip
oscillator may be fine-tuned by acquiring the data from this location and
moving it into the OSCCAL register.  Two DEFINEs have been created to
perform this task automatically each time the program starts:

Define OSCCAL_1K 1 ' Set OSCCAL for 1K
device

Define OSCCAL_2K 1 ' Set OSCCAL for 2K
device

Add one of these 2 DEFINEs near the beginning of the PICBASIC PRO
program to perform the setting of OSCCAL.

If a UV erasable device has been erased, the calibration value is no
longer in memory.  If one of these DEFINEs is used on an erased part, it
will cause the program to loop endlessly.  To set the OSCCAL register on
an erased part, near the beginning of the program, add the line:

OSCCAL = $a0 ' Set OSCCAL register to $a0

The $a0 is merely an example.  The part would need to be read before it
is erased to obtain the actual OSCCAL value for that particular device.

PICBASIC PRO will automatically load the OSCCAL value for the 12-bit
core devices, if it is available.  It is unnecessary to use the above
DEFINEs with these devices.

Some PIC MCUs with internal oscillators, like the PIC16F88, include an
oscillator control register that allows the selection of the oscillator
frequency.  On power-up or reset, this register may default to a slow
oscillator setting like 32kHz.  This slow speed may make it look as if the
program is not running at all.  To set the oscillator to a faster frequency
such as 4MHz, set:

OSCCON = $60 ' Set OSCCON to 4MHz

Please see the Microchip data sheets for more information on OSCCON
and any of the other PIC MCU registers.



PICBASIC PRO Compiler

13

2.5.2.  PICBASIC and BASIC Stamp Compatiblity

There are some differences between the standard PICBASIC Compiler,
the BASIC Stamps and the PICBASIC PRO Compiler.  See section 10 for
information on these differences.

2.5.3.  Code Crosses Page Boundary Messages

Many PIC MCUs contain code space memory that is segmented into 512,
2K or 8K word pages.  As large files are compiled and then assembled,
they may start to use more than the first page.  As each page is used,
PM, the assembler, will issue a message that the code is crossing a
particular boundary.  This is normal and no cause for alarm.  PBP will
make sure to take care of most of the issues for you.

The only thing that you must be aware of is the BRANCH instruction.  If a
BRANCH tries to access a label on the other side of a boundary, it will not
work properly.  BRANCHL should be used instead.  It can address labels
in any code page.

2.5.4.  Out of Memory Errors

Compiling large PICBASIC PRO source code files can tax the memory of
the PC running the compiler.  If an Out of Memory error is issued and the
FILES and BUFFERS are set as recommended, an alternate version of
PBP can be used.  PBPW.EXE has been compiled to make use of all of
the memory available to Windows 95, 98, ME, NT, 2000, XP and Vista. 
You must, of course, be running in a DOS shell from one of these 32-bit
Windows environments or be within Microchip's MPLAB or another
Windows IDE.  To execute the Windows version from the DOS command
line, simply substitute PBPW for PBP.

PBPW blink

2.6.  Coding Style

Writing readable and maintainable programs is an art.  There are a few
simple techniques you can follow that may help you become an artist.

2.6.1.  Comments

Use lots of comments.  Even though it may be perfectly obvious to you
what the code is doing as you write it, someone else looking at the



PICBASIC PRO Compiler

14

program (or even yourself when you are someone else later in life) may
not have any idea of what you were trying to achieve.  While comments
take up space in your BASIC source file, they do not take up any
additional space in the PIC MCU so use them freely.

Make the comments tell you something useful about what the program is
doing.  A comment like “Set Pin0 to 1" simply explains the syntax of the
language but does nothing to tell you why you have the need to do this. 
Something like “Turn on the Battery Low LED” might be a lot more useful.

A block of comments at the beginning of the program and before each
section of code can describe what is about to happen in more detail than
just the space remaining after each statement.  But don’t include a
comment block instead of individual line comments - use both.

At the beginning of the program describe what the program is intended to
do, who wrote it and when.  It may also be useful to list revision
information and dates.  Specifying what each pin is connected to can be
helpful in remembering what hardware this particular program is
designed to run on.  If it is intended to be run with a non-standard crystal
or special compiler options, be sure to list those. 

2.6.2.  Pin and Variable Names

Make the name of a pin or variable something more coherent than Pin0
or B1.  In addition to the liberal use of comments, descriptive pin and
variable names can greatly enhance readability.  The following code
fragment demonstrates:

BattLED Var PORTB.0 ‘ Low battery LED
level Var Byte ‘ Variable will contain the

battery level

If level < 10 Then ‘ If batt level is low
High BattLED ‘ Turn on the LED

Endif

2.6.3.  Labels

Labels should also be more meaningful than “label1:" or “here:”.  Even a
label like “loop:” is more descriptive (though only slightly).  Usually the line
or routine you are jumping to does something unique.  Try and give at



PICBASIC PRO Compiler

15

least a hint of its function with the label, and then follow up with a
comment.

2.6.4.  GOTO

Try not to use too many GOTOs.  While GOTOs may be a necessary evil,
try to minimize their use as much as possible.  Try to write your code in
logical sections and not jump around too much.  GOSUBs can be helpful in
achieving this.



PICBASIC PRO Compiler

16



PICBASIC PRO Compiler

17

3.  Command Line Options

3.1.  Usage

The PICBASIC PRO Compiler can be invoked from the DOS command
line using one of the following command formats:

PBP Options Filename
PBPW Options Filename
PBPL Options Filename

PBP is the DOS version of the compiler.  PBPW is the Windows version
of the compiler and can take advantage of all the PC’s memory.  PBPL is
the long version of the compiler and can use 32-bit variables, as well as
all of the PC’s memory under Windows.  PBPL can only be used with the
PIC18 devices.

Zero or more Options can be used to modify the manner in which PBP
compiles the specified file.  Options begin with either a minus ( - ) or a
forward slash ( / ).  The character following the minus or slash is a letter
which selects the Option.  Additional characters may follow if the
Option requires more information.  Each Option must be separated by
a space and no spaces may occur within an Option.

Multiple Options may be used at the same time.  For example the
command line:

PBP -p16f877 blink

will cause the file BLINK.BAS to be compiled targeted for a PIC16F877
processor.

The first item not starting with a minus is assumed to be the Filename. 
If no extension is specified, the default extension .BAS is used.  If a path
is specified, that directory is searched for the named file.  Regardless of
where the source file is found, files generated by PBP are placed in the
current directory.

By default, PBP automatically launches the assembler (PM.EXE) if the
compilation has no errors.  PBP expects to find PM.EXE in the same
directory as PBP.EXE.  If the compilation has errors or the -S option is
used, the assembler is not launched.



PICBASIC PRO Compiler

18

If PBP is invoked with no parameters or filename, a brief help screen is
displayed.

3.2.  Options

Option Description

A Use a different Assembler

C Insert source lines as Comments into assembler file

E Output errors to a file

H(?) Display Help screen

L Use a different Library file

O Pass Option to assembler

P Specify target Processor

S Skip execution of assembler when done

V Verbose mode

Z Add source level debugging information

3.2.1.  Option -A

PBP has the capability to use either PM, which is included with PBP, or
Microchip’s MPASMWIN as its assembler.  When using MPASMWIN,
PBPW or PBPL must be specified instead of PBP.  PBPW is the
Windows executable version of PBP.  To specify MPASMWIN as the
assembler, use -ampasmwin on the command line:

PBPW -ampasmwin filename
PBPL -ampasmwin filename

MPASMWIN must be acquired from Microchip and set up in the system
path.  See the file MPLAB.TXT on the disk for more details.

If no assembler is specified on the command line, PM is used.

3.2.2.  Option -C

The -C option causes PBP to insert the PICBASIC PRO source file lines
as comments into the assembly language source file.  This can be useful



PICBASIC PRO Compiler

19

as a debugging tool or learning tool as it shows the PICBASIC PRO
instruction followed by the assembly language instructions it generates.

PBP -c filename

3.2.3.  Option -E

The -E option causes PBP to send all the errors to a file, filename.er.

PBP -e filename

3.2.4.  Option -H or -?

The -H or -?option causes PBP to display a brief help screen.  This help
screen is also displayed if no option and filename is specified on the
command line.

3.2.5.  Option -L

The -L option lets you select the library used by PICBASIC PRO.  This
option is generally unnecessary as the default library file is set in a
configuration file for each microcontroller.  For more information on
PICBASIC PRO libraries, see the advanced sections later in this manual.

PBP -lpbpps2 filename

This example tells PBP to compile filename using the PicStic2 library.

3.2.6.  Option -O

The -O option causes the letters following it to be passed to the
assembler on its command line as options.

The PM assembler's manual on disk contains information about the
assembler and its options.

PBP -ol filename

This example tells PBP to generate a filename.lst file after a
successful compilation.

More than one -O option may be passed to the assembler at a time.



PICBASIC PRO Compiler

20

3.2.7.  Option -P

If not told otherwise, PBP compiles programs for the PIC16F84.  If the
program requires a different processor as its target, its name must be
specified on the command line use the -P option.

For example, if the desired target processor for the PBP program is a
PIC16F877, the command line should look something like the following:

PBP -p16F877 filename

3.2.8.  Option -S

Normally, when PBP successfully compiles a program, it automatically
launches the assembler.  This is done to convert the assembler output of
PBP to a .HEX file.  The -S option prevents this, leaving PBP's output in
the generated .ASM file.

Since -S prevents the assembler from being invoked, options that are
simply passed to the assembler using the -O command line switch are
effectively ignored.

PBP -s filename

3.2.9.  Option -V

The -V option turns on PBP’s verbose mode which presents more
information during program compilation.

PBP -v filename

3.2.10.  Option -Z

The -Z option tells PBPW to add source level simulation and debugging
information to the files that are generated during compilation.  For an
example of how to use this within MPLAB, see the MPLAB.TXT file.

PBPW -z filename



PICBASIC PRO Compiler

21

4.  PICBASIC PRO Basics

4.1.  Identifiers

An identifier is, quite simply, a name.  Identifiers are used in PBP for line
labels and variable names.  An identifier is any sequence of letters, digits,
and underscores, although it must not start with a digit.  Identifiers are not
case sensitive, thus label, LABEL, and Label are all treated as equivalent. 
And while labels might be any number of characters in length, PBP only
recognizes the first 31.

4.2.  Line Labels

In order to mark statements that the program might wish to reference
with GOTO or GOSUB commands, PBP uses line labels.  Unlike many
older BASICs, PBP doesn't allow line numbers and doesn't require that
each line be labeled.  Rather, any PBP line may start with a line label,
which is simply an identifier followed by a colon (:).

here: Serout 0,N2400,["Hello, World!",13,10]
Goto here

4.3.  Variables

Variables are where temporary data is stored in a PICBASIC PRO
program.  They are created using the VAR keyword.  Variables may be
bit-, byte- and word-sized for PBP and PBPW, and bit-, byte-, word- and
long-sized for PBPL.  Space for each variable is automatically allocated in
the microcontroller’s RAM by PBP.  The format for creating a variable is
as follows:

Label VAR Size{.Modifiers}

Label is any unique identifier, excluding keywords, as described above. 
Size is BIT, BYTE, WORD or, for PBPL, LONG.

Some examples of creating variable are:

dog VAR BYTE
cat VAR BIT
w0 VAR WORD
big VAR LONG ‘ PBPL only



PICBASIC PRO Compiler

22

Optional Modifiers add additional control over how the variable is
created and are listed in the section on Aliases, below.

The size and range of each variable type is detailed in the following table:

Size # of bits Range

BIT 1 0 to 1

BYTE 8 0 to 255

WORD 16 0 to 65535

LONG* 32 -2147483648 to
2147483647

* PBPL only.

As the table shows, bit-, byte- and word-sized variables are always
unsigned, i.e. positive numbers.  Long-sized variables, which are only
available in PBPL, are always signed, twos-complement numbers,
including positive and negative values.

PBPL interprets only long variable types as signed numbers.  Words,
bytes, and of course bits are always interpreted as positive, unsigned
integers when used as terms in a PBP math operation.

If the result of an operation could possibly be negative, it should be
stored to a long-sized variable type to preserve the sign.  If a negative
result is placed in a variable type other than long, subsequent
calculations using this value will interpret it as a positive number.

There are no predefined user variables in PICBASIC PRO.  For
compatibility sake, two files have been provided that create the standard
variables used with the BASIC Stamps: BS1DEFS.BAS and
BS2DEFS.BAS.  To use one of these files, add the line:

Include “bs1defs.bas”

or
Include “bs2defs.bas”

near the top of the PICBASIC PRO program.  These files contain
numerous VAR statements that create all of the BASIC Stamp variables
and pin definitions.



PICBASIC PRO Compiler

23

However, instead of using these “canned” files, we recommend you
create your own variables using names that are meaningful to you.

The number of variables available depends on the amount of RAM on a
particular device and the size of the variables and arrays.  PBP reserves
approximately 24 RAM locations for its own use.  It may also create
temporary variables that use additional RAM locations that are used for
sorting out complex equations.

4.4.  Aliases

VAR can also be used to create an alias (another name) for a variable. 
This is most useful for accessing the innards of a variable.

fido VAR dog ‘ fido is another name
for dog

b0 VAR w0.BYTE0 ‘ b0 is the first byte
of word w0

b1 VAR w0.BYTE1 ‘ b1 is the second byte
of word w0

flea VAR dog.0 ‘ flea is bit 0 of dog

These variable modifiers may also be used in statements:

b = w0.BYTE0
OPTION_REG.7 = 0 

Modifier Description

BIT0 or 0 Create alias to bit 0 of byte or word

BIT1 or 1 Create alias to bit 1 of byte or word

BIT2 or 2 Create alias to bit 2 of byte or word

BIT3 or 3 Create alias to bit 3 of byte or word

BIT4 or 4 Create alias to bit 4 of byte or word

BIT5 or 5 Create alias to bit 5 of byte or word

BIT6 or 6 Create alias to bit 6 of byte or word

BIT7 or 7 Create alias to bit 7 of byte or word

BIT8 or 8 Create alias to bit 8 of word or long

BIT9 or 9 Create alias to bit 9 of word or long



PICBASIC PRO Compiler

24

BIT10 or 10 Create alias to bit 10 of word or long

BIT11 or 11 Create alias to bit 11 of word or long

BIT12 or 12 Create alias to bit 12 of word or long

BIT13 or 13 Create alias to bit 13 of word or long

BIT14 or 14 Create alias to bit 14 of word or long

BIT15 or 15 Create alias to bit 15 of word or long

BIT16 or 16* Create alias to bit 16 of long

BIT17 or 17* Create alias to bit 17 of long

BIT18 or 18* Create alias to bit 18 of long

BIT19 or 19* Create alias to bit 19 of long

BIT20 or 20* Create alias to bit 20 of long

BIT21 or 21* Create alias to bit 21 of long

BIT22 or 22* Create alias to bit 22 of long

BIT23 or 23* Create alias to bit 23 of long

BIT24 or 24* Create alias to bit 24 of long

BIT25 or 25* Create alias to bit 25 of long

BIT26 or 26* Create alias to bit 26 of long

BIT27 or 27* Create alias to bit 27 of long

BIT28 or 28* Create alias to bit 28 of long

BIT29 or 29* Create alias to bit 29 of long

BIT30 or 30* Create alias to bit 30 of long

BIT31 or 31* Create alias to bit 31 of long

BYTE0 or LOWBYTE Create alias to low byte of word or long

BYTE1 or HIGHBYTE Create alias to high byte of word or long

BYTE2* Create alias to upper byte of long

BYTE3* Create alias to top byte of long

WORD0* Create alias to low word of long

WORD1* Create alias to high word of long

* PBPL only.



PICBASIC PRO Compiler

25

4.5.  Arrays

Variable arrays can be created in a similar manner to variables.

Label VAR Size[Number of elements]

Label is any identifier, excluding keywords, as described above.  Size
is BIT, BYTE or WORD (or LONG for PBPL.)  Number of elements is
how many array locations is desired.  Some examples of creating arrays
are:

sharks VAR BYTE[10]
fish VAR BIT[8]

The first array location is element 0.  In the fish array defined above,
the elements are numbered fish[0] to fish[7] yielding 8 elements in
total.

Because of the way arrays are allocated in memory, there are size limits
for each type:

Size Maximum Number of elements

BIT 256

BYTE 96*

WORD 48*

LONG **

* Processor family dependent.
** PIC18Xxxxx only - no set limit.

Arrays must fit entirely within one RAM bank on 12-bit, 14-bit or
PIC17Cxxx devices.  Arrays may span banks on PIC18Xxxxx devices. 
On PIC18Xxxxx devices, byte, word and long-sized arrays are only
limited in length by the amount of available memory.  The compiler will
assure that arrays, as well as simple variables, will fit in memory before
successfully compiling.



PICBASIC PRO Compiler

26

4.6.  Symbols

SYMBOL provides yet another method for aliasing variables and
constants.  It is included for BS1 compatibility.  SYMBOL cannot be used
to create a variable.  Use VAR to create a variable.

SYMBOL lion = cat ‘ cat was previously created
using VAR

SYMBOL mouse = 1 ‘ Same as mouse CON 1

4.7.  Constants

Named constants may be created in a similar manner to variables.  It
may be more convenient to use a name for a constant instead of using a
constant number.  If the number needs to be changed, it may be changed
in only one place in the program; where the constant is defined.  Variable
data cannot be stored in a constant.

Label CON Constant expression

Some examples of constants are:

mice CON 3
traps CON mice * 1000

4.8.  Numeric Constants

PBP allows numeric constants to be specified in one of three bases:
decimal, binary and hexadecimal.  Binary values are specified using the
prefix '%' and hexadecimal values using the prefix '$'.  Decimal values are
the default and require no prefix.

100 ‘ Decimal value 100
%100 ‘ Binary value for decimal 4
$100 ‘ Hexadecimal value for decimal 256

For ease of programming, single characters are converted to their ASCII
equivalents.  Character constants must be quoted using double quotes
and must contain only one character (otherwise, they are string
constants, see below).

"A" ‘ ASCII value for decimal 65
"d" ‘ ASCII value for decimal 100



PICBASIC PRO Compiler

27

4.9.  String Constants

PBP doesn't provide string handling capabilities, but strings can be used
with some commands.  A string contains one or more characters and is
delimited by double quotes.  No escape sequences are supported for
non-ASCII characters (although most PBP commands have this handling
built-in).

Lcdout "Hello" ‘ Output String (Short for
"H","e","l","l","o")

Strings are usually treated as a list of individual character values.

4.10.  Ports and Other Registers

All of the PIC MCU registers, including the ports, can be accessed just
like any other byte-sized variable in PICBASIC PRO.  This means that
they can be read from, written to or used in equations directly:

PORTA = %01010101 ‘ Write value to PORTA
anyvar = PORTB & $0f ‘ Isolate lower 4 bits

of PORTB and place
result into anyvar

4.11.  Pins

Pins may be accessed in a number of different ways.  The simplest way
to specify a pin for an operation is to simply use its PORT name and bit
number:

PORTB.1 = 1 ‘ Set PORTB, bit 1 to a 1

To make it easier to remember what a pin is used for, it may be assigned
a name using the VAR command.  In this manner, the name may then be
used in any operation:

led Var PORTA.0 ‘ Rename PORTA.0 as led
High led ‘ Set led (PORTA.0) high

For compatibility with the BASIC Stamp, pins used in PICBASIC PRO
Compiler commands may also be referred to by a number, 0 - 15.  This
number references different physical pins on the PIC MCU hardware
ports dependent on how many pins the microcontroller has.



PICBASIC PRO Compiler

28

No. PIC MCU Pins 0 - 7 8 - 15

8-pin GPIO GPIO

14 and 20-pin PORTA PORTC

18-pin PORTB PORTA

28-pin (except 14000) PORTB PORTC

14000 PORTC PORTD

40-pin and up PORTB PORTC

If a port does not have 8 pins, such as PORTA, only the pin numbers that
exist may be used, i.e. 8 - 12.  Using pin numbers 13 - 15 will have no
discernable effect.

This pin number, 0 - 15, has nothing to do with the physical pin number of
a PIC MCU.  Depending on the particular PIC MCU, pin number 0 could
be physical pin 6, 21 or 33, but in each case it maps to PORTB.0 (or
GPIO.0 for 8-pin devices, or PORTA.0 for 14 and 20-pin devices, or
PORTC.0 for a PIC14000).

High 0 ‘ Set PORTB.0 (or GPIO.0) high

B0 = 9 ‘ Select PORTC.1 (or PORTA.1)
Toggle B0 ‘ Toggle PORTC.1 (or PORTA.1)

Pins may be referenced by number (0 - 15), name (e.g. Pin0, if
BS1DEFS.BAS or BS2DEFS.BAS is included or you have defined them
yourself), or full bit name (e.g. PORTA.1).  Any pin or bit of the
microcontroller can be accessed using the latter method.

The pin names (i.e. Pin0) are not automatically included in your
program.  In most cases, you would define pin names as you see fit using
the VAR command:

led Var PORTB.3

However, two definition files have been provided to enhance BASIC
Stamp compatibility.  The files BS1DEFS.BAS or BS2DEFS.BAS may be
included in the PICBASIC PRO program to provide pin and bit names
that match the BASIC Stamp names.

Include “bs1defs.bas”

or



PICBASIC PRO Compiler

29

Include “bs2defs.bas”

BS1DEFS.BAS defines Pins, B0-B13, W0-W6 and most of the other BS1
pin and variable names.

BS2DEFS.BAS defines Ins, Outs, InL, Inh, OutL, Outh, B0-
B25, W0-W12 and most of the other BS2 pin and variable names.

PORTL and PORTH are also defined in PBP.  PORTL encompasses Pin0

- Pin7 and PORTH encompasses Pin8 - Pin15.

When a PIC MCU powers-up, all of the pins are set to input.  To use a
pin as an output, the pin or port must be set to an output or a command
must be used that automatically sets a pin to an output.

To set a pin or port to an output (or input), set its TRIS register.  Setting a
TRIS bit to 0 makes its corresponding port pin an output.  Setting a TRIS
bit to 1 makes its corresponding port pin an input.  For example:

TRISA = %00000000 ‘ Or TRISA = 0

sets all the PORTA pins to outputs.

TRISB = %11111111 ‘ Or TRISB = 255

sets all the PORTB pins to inputs.

TRISC = %10101010

Sets all the even pins on PORTC to outputs, and the odd pins to inputs. 
Individual bit directions may be set in the same manner.

TRISA.0 = 0

sets PORTA, pin 0 to an output.  All of the other pin directions on PORTA
are unchanged.

The BASIC Stamp variable names Dirs, Dirh, Dirl and Dir0-Dir15
are not defined and must not be used with the PICBASIC PRO Compiler. 
TRIS must be used instead, but has the opposite state of Dirs.



PICBASIC PRO Compiler

30

This does not work in PICBASIC PRO:

Dir0 = 1 ‘ Doesn’t set pin PORTB.0 to output

Do this instead:

TRISB.0 = 0 ‘ Set pin PORTB.0 to output

4.12.  Comments

A PBP comment starts with either the REM keyword, the single quote (‘)
or the semi-colon (;).  All following characters on this line are ignored.

Unlike many BASICs, REM is a unique keyword and not an abbreviation
for REMark.  Thus, variables names may begin with REM.

4.13.  Multi-statement Lines

In order to allow more compact programs and logical grouping of related
commands, PBP supports the use of the colon (:) to separate
statements placed on the same line.  Thus, the following two examples
are equivalent:

W2 = W0
W0 = W1
W1 = W2

is the same as:

W2 = W0 : W0 = W1 : W1 = W2

This does not, however, change the size of the generated code.

4.14.  Line-extension Character

The maximum number of characters that may appear on one PBP line is
256.  Longer statements may be extended to the next line using the line-
extension character ( _ ) at the end of each line to be continued.

Branch B0,[label0,label1,label2,_
label3,label4]



PICBASIC PRO Compiler

31

4.15.  INCLUDE

Other BASIC source files may be added to a PBP program by using
INCLUDE.  You may have standardized subroutines, definitions or other
files that you wish to keep separate.  The Stamp and serial mode
definition files are examples of this.  These files may be included in
programs when they are necessary, but kept out of programs where they
are not needed.

The included file’s source code lines are inserted into the program
exactly where the INCLUDE is placed.

INCLUDE “modedefs.bas”

4.16.  DEFINE

Some elements, like the clock oscillator frequency and the LCD pin
locations, are predefined in PBP.  DEFINE allows a PBP program to
change these definitions, if desired.

DEFINE may be used to change the predefined oscillator value, the
DEBUG pins and baud rate and the LCD pin locations, among other
things.

These definitions must be in all upper case, exactly as shown.  If not, the
compiler may not recognize them.  No error message will be produced for
DEFINEs the compiler does not recognize.

See the appropriate sections of the manual for specific information on
these definitions.  A complete list of DEFINEs is shown in Appendix B.

DEFINE OSC 4 ‘ Oscillator speed in
MHz: 3(3.58) 4 8 10 12
16 20 24 25 32 33 40 48
64

4.17.  Math Operators

Unlike the BASIC Stamp, the PICBASIC PRO Compiler performs all
math and comparison operations in full hierarchal order.  This means that
there is precedence to the operators.  Multiplies and divides are
performed before adds and subtracts, for example.  To ensure the



PICBASIC PRO Compiler

32

operations are carried out in the order you would like, use parenthesis to
group the operations:

A = (B + C) * (D - E)

All math operations when compiling with PBP and PBPW are unsigned
and performed with 16-bit precision.  Math operations for PBPL use 32-
bit precision.

Bitwise operators, including the shift operators, always operate in an
unsigned fashion, regardless of the variable type they are acting on,
signed or unsigned.



PICBASIC PRO Compiler

33

Math Operators Description

 + Addition

- Subtraction

 * Multiplication

** Top 16 Bits of Multiplication

*/ Middle 16 Bits of Multiplication

/ Division

// Remainder (Modulus)

<< Shift Left

>> Shift Right

ABS Absolute Value*

COS Cosine

DCD 2n Decode

DIG Digit

DIV32 31-bit x 15-bit Divide

MAX Maximum*

MIN Minimum*

NCD Encode

REV Reverse Bits

SIN Sine

SQR Square Root

& Bitwise AND

| Bitwise OR

^ Bitwise Exclusive OR

~ Bitwise NOT

&/ Bitwise NOT AND

|/ Bitwise NOT OR

^/ Bitwise NOT Exclusive OR

*Implementation differs from BASIC Stamp.



PICBASIC PRO Compiler

34

4.17.1.  Multiplication

PBP and PBPW perform unsigned 16-bit x 16-bit multiplication, while
PBPL performs signed 32-bit x 32-bit multiplication.

W1 = W0 * 1000 ‘ Multiply value in W0 by 1000
and place the result in W1

PBPL interprets only long variable types as signed numbers.  Words,
bytes, and of course bits are always interpreted as positive, unsigned
integers when used as terms in a PBP math operation.

If the result of a multiplication could possibly be negative, it should be
stored to a long-sized variable type to preserve the sign.  If a negative
result is placed in a variable type other than long, subsequent
calculations using this value will interpret it as a positive number.

B0 = 4
L0 = B0 * -1 ‘ Result is -4 in L0
W0 = B0 * -1 ‘ Result is 65,532 in W0

'*/' and '**' Operators

There are two special multiplication operators that allow large result
values to be handled in a special way.  These operators ignore some of
the least-significant bytes of the result and return higher order bytes
instead.  With PBP and PBPW, this allows you to work (in a limited way)
with 32-bit multiplication results.  With PBPL, the top 32 bits of a 48-bit
result are available.

The '*/' operator discards the least-significant byte of the result (byte0),
and returns the 4 higher bytes to the result variable.  If the result variable
is a word or byte, the value will be truncated to fit.

W3 = W1 */ W0 ‘ Multiply W1 by W0, ignore
byte0 of the result, return
byte1 and byte2 in W3

L3 = L1 */ L0 ‘ Multiply L1 by L0, ignore
byte0 of the result, return
byte1 through byte4 in L3

A simple way to think about '*/' is that it shifts the result 8 places to the
right, resulting in an automatic division by 256. (This does not hold true if



PICBASIC PRO Compiler

35

the result is a negative number.)  This is useful for multiplying by
non-integer constants.

If you wished to convert miles to kilometers, for example, you would need
to multiply by a constant 1.6.  PBP's integer math won't allow you to write
"1.6" in an equation, but you can use '*/' to accomplish the same result:

kilometers = miles */ 410 ‘ Same as
kilometers =
(miles * 410) /
256

The '**' operator is similar, but ignores two bytes instead of one.  When
using PBPL with long variable types, it returns byte2 through byte5 of the
48-bit result value.  This gives a result that is shifted 16 places to the
right, an inherent divide by 65536.        

W2 = W0 ** 1000 ‘ Multiply W0 by 1000 and
place the high order 16 bits
(which may be 0) in W2

4.17.2.  Division

PBP and PBPW perform unsigned 16-bit x 16-bit division.  The '/'
operator returns the 16-bit result.

PBPL performs signed 32-bit x 32-bit division.  The '/' operator returns
the 32-bit result.

The '//' operator returns the remainder.  This is sometimes referred to
as the modulus of the number.

W1 = W0 / 1000 ‘ Divide value in W0 by 1000
and place the result in W1

W2 = W0 // 1000 ‘ Divide value in W0 by 1000
and place the remainder in W2

PBPL interprets only long variable types as signed numbers.  Words,
bytes, and of course bits are always interpreted as positive, unsigned
integers when used as terms in a PBP math operation.

If the result of a multiplication could possibly be negative, it should be
stored to a long-sized variable type to preserve the sign.  If a negative



PICBASIC PRO Compiler

36

result is placed in a variable type other than long, subsequent
calculations using this value will interpret it as a positive number.

B0 = 4
L0 = B0 * -1 ‘ Result is -4 in L0
W0 = B0 * -1 ‘ Result is 65,532 in W0

The same applies to the '//' operator:

B0 = 23
L0 = B0 // -4 ‘ Result is -3 in L0
W0 = B0 // -4 ‘ Result is 65,533 in W0

4.17.3.  Shift

The '<<' and '>>' operators shift a value left or right, respectively, 0 to 31
times.  The newly shifted-in bits are set to 0.

B0 = B0 << 3 ‘ Shifts B0 left 3 places
(same as multiply by 8)

W1 = W0 >> 1 ‘ Shifts W0 right 1 position
and places result in W1 (same
as divide by 2)

4.17.4.  ABS

ABS returns the absolute value of a number.  If a byte is greater than 127
(high bit set), ABS will return 256 - value.  If a word is greater than 32767
(high bit set), ABS will return 65536 - value.  If a long is negative, ABS will
return 4294967296 - value.

B1 = ABS B0

4.17.5.  COS

COS returns the 8-bit cosine of a value.  The result is in two’s complement
form (i.e. -127 to 127).  It uses a quarter-wave lookup table to find the
result.  Cosine starts with a value in binary radians, 0 to 255, as opposed
to the usual 0 to 359 degrees.

B1 = COS B0



PICBASIC PRO Compiler

37

4.17.6.  DCD

DCD returns the decoded value of a bit number.  It changes a bit number
(0 - 31) into a binary number with only that bit set to 1.  All other bits are
set to 0.

B0 = DCD 2 ‘ Sets B0 to %00000100

4.17.7.  DIG

DIG returns the value of a decimal digit.  Simply tell it the digit number (0
- 9 with 0 being the rightmost digit) you would like the value of, and voila.

B0 = 123 ‘ Set B0 to 123
B1 = B0 DIG 1 ‘ Sets B1 to 2 (digit 1 of

123)

4.17.8.  DIV32

PBP and PBPW’s multiply (*) function operates as a 16-bit x 16-bit
multiply yielding a 32-bit internal result.  However, since the compiler only
supports a maximum variable size of 16 bits, access to the result had to
happen in 2 steps: c = b * a returns the lower 16 bits of the multiply while
d = b ** a returns the upper 16 bits.  There was no way to access the
32-bit result as a unit.

In many cases it is desirable to be able to divide the entire 32-bit result of
the multiply by a 16-bit number for averaging or scaling.  A new function
has been added for this purpose: DIV32.  DIV32 is actually limited to
dividing a 31-bit unsigned integer (max 2147483647) by a 15-bit unsigned
integer (max 32767).  This should suffice in most circumstances.

As the compiler only allows a maximum variable size of 16 bits, DIV32
relies that a multiply was just performed and that the internal compiler
variables still contain the 32-bit result of the multiply.  No other operation
may occur between the multiply and the DIV32 or the internal variables
may be altered, destroying the 32-bit multiplication result.

This means, among other things, that ON INTERRUPT must be
DISABLEd from before the multiply until after the DIV32.  If ON
INTERRUPT is not used, there is no need to add DISABLE to the
program.  Interrupts in assembler should have no effect on the internal
variables so they may be used without regard to DIV32.



PICBASIC PRO Compiler

38

The following code fragment shows the operation of DIV32:

a Var Word
b Var Word
c Var Word
dummy Var Word

b = 500
c = 1000

Disable ' Necessary if On Interrupt used

dummy = b * c ' Could also use ** or */
a = DIV32 100

Enable ' Necessary if On Interrupt used

This program assigns b the value 500 and c the value 1000.  When
multiplied together, the result would be 500000.  This number exceeds
the 16-bit word size of a variable (65535).  So the dummy variable
contains only the lower 16 bits of the result.  In any case, it is not used by
the DIV32 function.  DIV32 uses variables internal to the compiler as the
operands.

In this example, DIV32 divides the 32-bit result of the multiplication b * c
by 100 and stores the result of this division, 5000, in the word-sized
variable a.

DIV32 is not supported by PBPL as that version of the compiler always
uses a 32-bit x 32-bit divide.

4.17.9.  MAX and MIN

MAX and MIN returns the maximum and minimum, respectively, of two
numbers.  It is usually used to limit numbers to a value.

B1 = B0 MAX 100 ‘ Set B1 to the larger of B0
and 100 (B1 will be between
100 & 255)

B1 = B0 MIN 100 ‘ Set B1 to the smaller of B0
and 100 (B1 can’t be bigger
than 100)



PICBASIC PRO Compiler

39

4.17.10.  NCD

NCD returns the priority encoded bit number (1 - 32) of a value.  It is used
to find the highest bit set in a value.  It returns 0 if no bit is set.

B0 = NCD %01001000 ‘ Sets B0 to 7

4.17.11.  REV

REV reverses the order of the lowest bits in a value.  The number of bits
to be reversed is from 1 to 32.

B0 = %10101100 REV 4 ‘ Sets B0 to %00000011

4.17.12.  SIN

SIN returns the 8-bit sine of a value.  The result is in two’s complement
form (i.e. -127 to 127).  It uses a quarter-wave lookup table to find the
result.  Sine starts with a value in binary radians, 0 to 255, as opposed to
the usual 0 to 359 degrees.

B1 = SIN B0

4.17.13.  SQR

SQR returns the square root of a value.  Since PICBASIC PRO only works
with integers, the result will always be an 8-bit integer (16-bits for PBPL)
no larger than the actual result.

B0 = SQR W1 ‘ Sets B0 to square root of W1

4.17.14.  Bitwise Operators

Bitwise operators act on each bit of a value in boolean fashion.  They can
be used to isolate bits or add bits into a value.

B0 = B0 & %00000001 ‘ Isolate bit 0 of B0
B0 = B0 | %00000001 ‘ Set bit 0 of B0
B0 = B0 ^ %00000001 ‘ Flip state of bit 0 of

B0



PICBASIC PRO Compiler

40

4.18.  Comparison Operators

Comparison operators are used in IF..THEN statements to compare
one expression with another.  These comparisons for bytes and words
are unsigned.  They cannot be used to test if a number is less than 0. 
Long variables in PBPL are signed and can be tested for less than 0.

Comparison Operator Description

 = or == Equal

<> or != Not Equal

< Less Than

> Greater Than

<= Less Than or Equal

>= Greater Than or Equal

If i > 10 Then loop

4.19.  Logical Operators

Logical operators differ from bitwise operations.  They yield a true/false
result from their operation.  Values of 0 are treated as false.  Any other
value is treated as true.  They are mostly used in conjunction with the
comparison operators in an IF..THEN statement.

Logical Operator Description

AND or && Logical AND

OR or || Logical OR

XOR or ^^ Logical Exclusive OR

NOT or ! Logical NOT

ANDNOT Logical NAND

ORNOT Logical NOR

XORNOT Logical NXOR

If (A == big) AND (B > mean) Then run

Be sure to use parenthesis to tell PBP the exact order of operation.



PICBASIC PRO Compiler

41

5.  PICBASIC PRO Statement Reference

@ Insert one line of assembly language code.
ADCIN Read on-chip analog to digital converter.
ASM..ENDASM Insert assembly language code section.
BRANCH Computed GOTO (equiv. to ON..GOTO).
BRANCHL BRANCH out of page (long BRANCH).
BUTTON Debounce and auto-repeat input on specified pin.
CALL Call assembly language subroutine.
CLEAR Zero all variables.
CLEARWDT Clear (tickle) Watchdog Timer.
COUNT Count number of pulses on a pin.
DATA Define initial contents of on-chip EEPROM.
DEBUG Asynchronous serial output with fixed pin and baud.
DEBUGIN Asynchronous serial input with fixed pin and baud.
DISABLE Disable ON DEBUG and ON INTERRUPT processing.
DISABLE DEBUG Disable ON DEBUG processing.
DISABLE INTERRUPT Disable ON INTERRUPT processing.
DTMFOUT Produce touch-tone frequencies on a pin.
EEPROM Define initial contents of on-chip EEPROM.
ENABLE Enable ON DEBUG and ON INTERRUPT processing.
ENABLE DEBUG Enable ON DEBUG processing.
ENABLE INTERRUPT Enable ON INTERRUPT processing.
END Stop program execution and enter low power mode.
ERASECODE Erase block of code memory.
FOR..NEXT Repeatedly execute statements in a counted loop.
FREQOUT Produce 1 or 2 frequencies on a pin.
GOSUB Call BASIC subroutine at specified label.
GOTO Continue execution at specified label.
HIGH Make pin output high.
HPWM Output hardware pulse width modulated pulse train.
HSERIN Hardware asynchronous serial input.
HSERIN2 Hardware asynchronous serial input, second port.
HSEROUT Hardware asynchronous serial output.
HSEROUT2 Hardware asynchronous serial output, second port.
I2CREAD Read from I2C device.
I2CWRITE Write to I2C device.
IF..THEN..ELSE..ENDIF Conditionally execute statements.
INPUT Make pin an input.
LCDIN Read from LCD RAM.



PICBASIC PRO Compiler

42

LCDOUT Display characters on LCD.
{LET} Assign result of an expression to a variable.
LOOKDOWN Search constant table for value.
LOOKDOWN2 Search constant / variable table for value.
LOOKUP Fetch constant value from table.
LOOKUP2 Fetch constant / variable value from table.
LOW Make pin output low.
NAP Power down processor for short period of time.
ON DEBUG Execute BASIC debug monitor.
ON INTERRUPT Execute BASIC subroutine on an interrupt.
OWIN 1-wire input.
OWOUT 1-wire output.
OUTPUT Make pin an output.
PAUSE Delay (1 millisecond resolution).
PAUSEUS Delay (1 microsecond resolution).
PEEK Read byte from register.
PEEKCODE Read byte from code space.
POKE Write byte to register.
POKECODE Write byte to code space when programming device.
POT Read potentiometer on specified pin.
PULSIN Measure pulse width on a pin.
PULSOUT Generate pulse on a pin.
PWM Output pulse width modulated pulse train to pin.
RANDOM Generate pseudo-random number.
RCTIME Measure pulse width on a pin.
READ Read byte from on-chip EEPROM.
READCODE Read word from code memory.
REPEAT..UNTIL Execute statements until condition is true.
RESUME Continue execution after interrupt handling.
RETURN Continue at statement following last GOSUB.
REVERSE Make output pin an input or an input pin an output.
SELECT CASE Compare a variable with different values.
SERIN Asynchronous serial input (BS1 style).
SERIN2 Asynchronous serial input (BS2 style).
SEROUT Asynchronous serial output (BS1 style).
SEROUT2 Asynchronous serial output (BS2 style).
SHIFTIN Synchronous serial input.
SHIFTOUT Synchronous serial output.
SLEEP Power down processor for a period of time.
SOUND Generate tone or white-noise on specified pin.



PICBASIC PRO Compiler

43

STOP Stop program execution.
SWAP Exchange the values of two variables.
TOGGLE Make pin output and toggle state.
USBIN USB input.
USBINIT Initialize USB.
USBOUT USB output.
USBSERVICE USB service loop.
WHILE..WEND Execute statements while condition is true.
WRITE Write byte to on-chip EEPROM.
WRITECODE Write word to code memory.
XIN X-10 input.
XOUT X-10 output.



PICBASIC PRO Compiler

44

5.1.  @

@ Statement

When used at the beginning of a line, @ provides a shortcut for inserting
one assembly language Statement into your PBP program.  You can
use this shortcut to mix assembly language code with PICBASIC PRO
statements.

i Var Byte
rollme Var Byte

For i = 1 To 4
@ rlf _rollme, F ; Rotate byte left once

Next i

The @ shortcut can also be used to include assembly language routines
in another file.  For example:

@ Include “fp.asm”

@ resets the register page to 0 before executing the assembly language
instruction.  The register page should not be altered using @.

See the section on assembly language programming for more
information.



PICBASIC PRO Compiler

45

5.2.  ADCIN

ADCIN Channel,Var

Read the on-chip analog to digital converter Channel and store the
result in Var.  While the ADC registers can be accessed directly, ADCIN
makes the process a little easier.

Before ADCIN can be used, the appropriate TRIS register must be set to
make the desired pins inputs.  The ADCON, ANCON and/or ANSEL
registers must also be set to assign the desired pins to analog inputs and
in some cases to set the result format and clock source (set the clock
source the same as the DEFINE specified for it, below).  See the
Microchip data sheets for more information on these registers and things
like the clock source and how to set them for the specific device.  Note:
The PIC14000 ADC is not compatible with the ADCIN instruction.

Depending on the device, it may have an 8-, 10- or 12-bit ADC.  For
many PIC MCUs, the high bit of ADCON0 or ADCON1 controls whether
the result is left or right justified.  In most cases, 8-bit results should be
left justified (ADCON1.7 = 0) and 10- and 12-bit results should be right
justified (ADCON1.7 = 1).

Several DEFINEs may also be used.  The defaults are shown below:

DEFINE ADC_BITS 8 ‘ Set number of bits in
result (8, 10 or 12)

DEFINE ADC_CLOCK 3 ‘ Set clock source (rc =
3)

DEFINE ADC_SAMPLEUS 50 ‘ Set sampling time in
microseconds

ADC_SAMPLEUS is the number of microseconds the program waits
between setting the Channel and starting the analog to digital
conversion.  This is the sampling time.

TRISA = 255 ‘ Set PORTA to all input
ADCON1 = 0 ‘ PORTA is analog
ADCIN 0, B0 ‘ Read channel 0 to B0



PICBASIC PRO Compiler

46

5.3.  ASM..ENDASM

ASM
ENDASM

The ASM and ENDASM instructions tells PBP that the code between these
two lines is in assembly language and should not be interpreted as
PICBASIC PRO statements.  You can use these two instructions to mix
assembly language code with PICBASIC PRO statements.

The maximum size for an assembler text section is 8K characters.  This
is the maximum size for the actual source, including comments, not the
generated code.  If the text block is larger than this, you must break it into
multiple ASM..ENDASM sections or simply include it in a separate file.

ASM resets the register page to 0.  You must ensure that the register
page is reset to 0 before ENDASM, if the assembly language code has
altered it.

ENDASM must not appear in a comment in the assembly language section
of the program.  As the compiler cannot discern what is happening in the
assembly section, an ENDASM anywhere in an ASM section will cause the
compiler to revert to BASIC parsing.

See the section on assembly language programming for more
information.

ASM
bsf PORTA, 0 ; Set bit 0 on PORTA
bcf PORTB, 0 ; Clear bit 0 on PORTB

ENDASM



PICBASIC PRO Compiler

47

5.4.  BRANCH

BRANCH Index,[Label{,Label...}]

BRANCH causes the program to jump to a different location based on a
variable index.  This is similar to On..Goto in other BASICs.

Index selects one of a list of Labels.  Execution resumes at the
indexed Label.  For example, if Index is zero, the program jumps to the
first Label specified in the list, if Index is one, the program jumps to the
second Label, and so on.  If Index is greater than or equal to the
number of Labels, no action is taken and execution continues with the
statement following the BRANCH.  Up to 255 (256 for PIC18Xxxxx)
Labels may be used in a BRANCH.

For 12- and 14-bit core and PIC17Cxxx devices, Label must be in the
same code page as the BRANCH instruction.  If you cannot be sure they
will be in the same code page, use BRANCHL below.

For PIC18Xxxxx devices, the Label must be within 1K of the BRANCH
instruction as it uses a relative jump.  If the Label is out of this range,
use BRANCHL.

BRANCH B4,[dog,cat,fish]
‘ Same as:
‘  If B4=0 Then dog (goto dog)
‘  If B4=1 Then cat (goto cat)
‘  If B4=2 Then fish (goto fish)



PICBASIC PRO Compiler

48

5.5.  BRANCHL

BRANCHL Index,[Label{,Label...}]

BRANCHL (BRANCH long) works very similarly to BRANCH in that it causes
the program to jump to a different location based on a variable index. 
The main differences are that it can jump to a Label that is in a different
code page than the BRANCHL instruction for 12- and 14-bit core and
PIC17Cxxx devices, or further away than 1K for PIC18Xxxxx devices.  It
also generates code that is about twice the size as code generated by the
BRANCH instruction.  If you are sure the labels are in the same page as
the BRANCH instruction or if the microcontroller does not have more than
one code page, using BRANCH instead of BRANCHL will minimize memory
usage.

Index selects one of a list of Labels.  Execution resumes at the
indexed Label.  For example, if Index is zero, the program jumps to the
first Label specified in the list, if Index is one, the program jumps to the
second Label, and so on.  If Index is greater than or equal to the
number of Labels, no action is taken and execution continues with the
statement following the BRANCHL.  Up to 127 (256 for PIC18Xxxxx)
Labels may be used in a BRANCHL.

BRANCHL B4,[dog,cat,fish]
‘ Same as:
‘  If B4=0 Then dog (goto dog)
‘  If B4=1 Then cat (goto cat)
‘  If B4=2 Then fish (goto fish)



PICBASIC PRO Compiler

49

5.6.  BUTTON

BUTTON Pin,Down,Delay,Rate,BVar,Action,Label

Read Pin and optionally perform debounce and auto-repeat.  Pin is
automatically made an input.  Pin may be a constant, 0-15, or a variable
that contains a number 0-15 (e.g. B0) or a pin name (e.g. PORTA.0).

Down State of pin when button is pressed (0..1).
Delay Cycle count before auto-repeat starts (0..255).  If 0, no

debounce or auto-repeat is performed.  If 255,
debounce, but no auto-repeat, is performed.

Rate Auto-repeat rate (0..255).
BVar Byte-sized variable used internally for delay/repeat

countdown.  It must be initialized to 0 prior to use and not
used elsewhere in the program.

Action State of button to act on (0 if not pressed, 1 if pressed).
Label Execution resumes at this label if Action is true.

10K

I/O

10K

I/O

‘ Goto notpressed if button not pressed on Pin2
BUTTON PORTB.2,0,100,10,B2,0,notpressed

BUTTON needs to be used within a loop for auto-repeat to work properly.

BUTTON accomplishes debounce by delaying program execution for a
period of milliseconds to wait for the contacts to settle down.  The default
debounce delay is 10ms.  To change the debounce to another value, use
DEFINE:

‘ Set button debounce delay to 50ms
DEFINE BUTTON_PAUSE 50



PICBASIC PRO Compiler

50

Be sure that BUTTON_PAUSE is all in upper case.  The maximum delay
for 12-bit core devices is 65ms.

In general, it is easier to simply read the state of the pin in an IF..THEN
than to use the BUTTON command as follows:

If PORTB.2 = 1 Then notpressed

Example program:

INCLUDE "modedefs.bas" ‘ Include serial modes

SO Con 0 ‘ Define serial output pin
Bpin Con 2 ‘ Define Button input pin
B0 Var Byte

B0 = 0 ‘ Zero Button working buffer

loop: BUTTON Bpin,1,10,5,B0,0,notp ‘ Check button
(skip if not
pressed)

Serout SO,N2400,["Press",13,10]   ' Indicate
button
pressed

notp: Serout SO,N2400,[#B0,13,10] ' Show working
variable

Pause 100 ‘ Wait a little
 Goto loop ‘ Do it forever



PICBASIC PRO Compiler

51

5.7.  CALL

CALL Label

Execute the assembly language subroutine named _Label.

GOSUB is normally used to execute a PICBASIC PRO subroutine.  The
main difference between GOSUB and CALL is that with CALL, Label’s
existence is not checked until assembly time.  A Label in an assembly
language section can be accessed using CALL that is otherwise
inaccessible to PBP.  The assembly Label should be preceeded by an
underscore (_).

See the section on assembly language programming for more
information on CALL.

CALL pass ‘ Execute assembly language
subroutine named _pass



PICBASIC PRO Compiler

52

5.8.  CLEAR

CLEAR

Set all RAM registers to zero.

CLEAR zeroes all the RAM registers in each bank.  This will set all
variables, including the internal system variables (but not PIC MCU
hardware registers) to zero.  This is not automatically done when a PBP
program starts as it is on a BASIC Stamp.  In general, the variables
should be initialized in the program to an appropriate state rather than
using CLEAR.

CLEAR does not zero bank 0 registers on 12-bit core devices.

CLEAR ‘ Clear all variables to 0



PICBASIC PRO Compiler

53

5.9.  CLEARWDT

CLEARWDT

Clear (tickle) the Watchdog Timer.

The Watchdog Timer is used in conjunction with the SLEEP and NAP
instructions to wake the PIC MCU after a certain period of time. 
Assembler instructions (clrwdt) to keep the Watchdog Timer from timing
out under normal circumstances and resetting the PIC MCU are
automatically inserted at appropriate places throughout the program.

CLEARWDT allows the placement of additional clrwdt instructions in the
program.

CLEARWDT ‘ Clear Watchdog Timer

A DEFINE can be used to remove all of the clrwdt instructions the
compiler automatically adds.  In many cases, the clrwdt instruction is
replaced with nop to preserve the timing of the routine.

DEFINE NO_CLRWDT 1 ‘ Don’t insert CLRWDTs



PICBASIC PRO Compiler

54

5.10.  COUNT

COUNT Pin,Period,Var

Count the number of pulses that occur on Pin during the Period and
stores the result in Var.  Pin is automatically made an input.  Pin may
be a constant, 0-15, or a variable that contains a number 0-15 (e.g. B0)
or a pin name (e.g. PORTA.0).

The resolution of Period is in milliseconds.  It tracks the oscillator
frequency based on the DEFINEd OSC.

COUNT checks the state of Pin in a tight loop and counts the low to high
transitions.  With a 4MHz oscillator it checks the pin state every 20us. 
With a 20MHz oscillator it checks the pin state every 4us.  From this, it
can be determined that the highest frequency of pulses that can be
counted is 25KHz with a 4MHz oscillator and 125KHz with a 20MHz
oscillator, if the frequency has a 50% duty cycle (the high time is the
same as the low time).

‘ Count # of pulses on Pin1 in 100 milliseconds
COUNT PORTB.1,100,W1

‘ Determine frequency on a pin
COUNT PORTA.2, 1000, W1 ‘ Count for 1 second
Serout PORTB.0,N2400,[W1]



PICBASIC PRO Compiler

55

5.11.  DATA

{Label} DATA {@Location,}Constant{,Constant...}

Store constants in on-chip non-volatile EEPROM when the device is first
programmed.  If the optional Location value is omitted, the first DATA
statement starts storing at address 0 and subsequent statements store at
the following locations.  If the Location value is specified, it denotes the
starting location where these values are stored.  An optional Label  (not
followed by a colon) can be assigned to the starting EEPROM address
for later reference by the program. 

Constant can be a numeric constant or a string constant.  Only the least
significant byte of numeric values are stored unless the WORD modifier is
used.  Strings are stored as consecutive bytes of ASCII values.  No
length or terminator is automatically added.

DATA only works with microcontrollers with on-chip EEPROM such as the
PIC12F683, PIC16F84 and the PIC16F87x series.  It will not work on
devices with on-chip I2C interfaced serial EEPROM like the 12CE67x and
16CE62x parts.  Since EEPROM is non-volatile memory, the data will
remain intact even if the power is turned off.

The data is stored in the EEPROM space only once at the time the
microcontroller is programmed, not each time the program is run.  WRITE
can be used to set the values of the on-chip EEPROM at runtime.  READ
is used to retrieve these stored DATA values at runtime.

‘ Store 10, 20 and 30 starting at location 4
DATA @4,10,20,30

‘ Assign a label to a word at the next location
dlabel DATA word $1234 ‘ Stores $34, $12

‘ Assign a label to a long at the next location

llabel DATA long $12345678 ‘ Stores $78, $56, $34,
$12

‘ Skip 4 locations and store 10 0s
DATA (4),0(10)



PICBASIC PRO Compiler

56

5.12.  DEBUG

DEBUG Item{,Item...}

Send one or more Items on a predefined pin at a predefined baud rate in
standard asynchronous format using 8 data bits, no parity and 1 stop bit
(8N1).  The pin is automatically made an output.

If a pound sign (#) precedes an Item, the ASCII representation for each
digit is sent serially.  DEBUG (on all devices except 12-bit core) also
supports the same data modifiers as SEROUT2.  Refer to the section on
SEROUT2 for this information.

Modifier Operation

{I}{S}BIN{1..32} Send binary digits

{I}{S}DEC{1..10} Send decimal digits

{I}{S}HEX{1..8} Send hexadecimal digits

REP c\n Send character c repeated n times

STR ArrayVar{\n} Send string of n characters

DEBUG is one of several built-in asynchronous serial functions.  It is the
smallest and fastest of the software generated serial routines.  It can be
used to send debugging information (variables, program position
markers, etc.) to a terminal program like Hyperterm.  It can also be used
anytime serial output is desired on a fixed pin at a fixed baud rate.

The serial pin and baud rate are specified using DEFINEs:

‘ Set Debug pin port
DEFINE DEBUG_REG PORTB

‘ Set Debug pin bit
DEFINE DEBUG_BIT 0

‘ Set Debug baud rate
DEFINE DEBUG_BAUD 2400

‘ Set Debug mode: 0 = true, 1 = inverted
DEFINE DEBUG_MODE 1



PICBASIC PRO Compiler

57

DEBUG assumes a 4MHz oscillator when generating its bit timing.  To
maintain the proper baud rate timing with other oscillator values, be sure
to DEFINE the OSC setting to any different oscillator value.

In some cases, the transmission rates of DEBUG instructions may present
characters too quickly to the receiving device.  A DEFINE adds character
pacing to the serial output transmissions.  This allows additional time
between the characters as they are transmitted.  The character pacing
DEFINE allows a delay of up to 65,535 microseconds (65.535
milliseconds) between each character transmitted.

For example, to pause 1 millisecond between the transmission of each
character:

DEFINE DEBUG_PACING 1000

While single-chip RS-232 level converters are common and inexpensive,
thanks to current RS-232 implementation and the excellent I/O
specifications of the PIC MCU, most applications may not require level
converters.  Rather, inverted TTL (DEBUG_MODE 1) may be used.  A
current limiting resistor is suggested (RS-232 is suppose to be
short-tolerant).

1K
Pin RS-232 RX

RS-232 GND

Pin 2

Pin 5 Pin 7

Pin 3

DB9 DB25

‘ Send the text “B0=” followed by the decimal
value of B0 and a linefeed out serially
DEBUG “B0=“,DEC B0,10



PICBASIC PRO Compiler

58

5.13.  DEBUGIN

DEBUGIN {Timeout,Label,}[Item{,Item...}]

Receive one or more Items on a predefined pin at a predefined baud
rate in standard asynchronous format using 8 data bits, no parity and 1
stop bit (8N1).  The pin is automatically made an input.

An optional Timeout and Label may be included to allow the program
to continue if a character is not received within a certain amount of time. 
Timeout is specified in 1 millisecond units.  If the serial input pin stays
idle during the Timeout time, the program will exit the DEBUGIN
command and jump to Label.

DEBUGIN (on all devices except 12-bit core) supports the same data
modifiers as SERIN2.  Refer to the section on SERIN2 for this
information.

Modifier Operation

BIN{1..32} Receive binary digits

DEC{1..10} Receive decimal digits

HEX{1..8} Receive upper case hexadecimal digits

SKIP n Skip n received characters

STR ArrayVar\n{\c} Receive string of n characters
optionally ended in character c

WAIT ( ) Wait for sequence of characters

WAITSTR ArrayVar{\n} Wait for character string

DEBUGIN is one of several built-in asynchronous serial functions.  It is the
smallest and fastest of the software generated serial routines.  It can be
used to receive debugging information from a terminal program like
Hyperterm.  It can also be used anytime serial input is desired on a fixed
pin at a fixed baud rate.

The serial pin and baud rate are specified using DEFINEs:

‘ Set Debugin pin port
DEFINE DEBUGIN_REG PORTB



PICBASIC PRO Compiler

59

‘ Set Debugin pin bit
DEFINE DEBUGIN_BIT 0

‘ Set Debugin baud rate (same as Debug baud)
DEFINE DEBUG_BAUD 2400

‘ Set Debugin mode: 0 = true, 1 = inverted
DEFINE DEBUGIN_MODE 1

If any of these DEFINEs are not included in a program, the DEBUGIN
port, pin or mode is set to the same values as they are for DEBUG.  The
DEBUGIN baud rate is always the same as DEBUG’s.  It cannot be
DEFINEd differently.

DEBUGIN assumes a 4MHz oscillator when generating its bit timing.  To
maintain the proper baud rate timing with other oscillator values, be sure
to DEFINE the OSC setting to any different oscillator value.

While single-chip RS-232 level converters are common and inexpensive,
thanks to current RS-232 implementation and the excellent I/O
specifications of the PIC MCU, most applications may not require level
converters.  Rather, inverted TTL (DEBUGIN_MODE 1) may be used.  A
current limiting resistor is necessary to dissipate the higher and
sometimes negative RS-232 voltage.

22K
Pin RS-232 TX

RS-232 GND

Pin 3

Pin 5 Pin 7

Pin 2

DB9 DB25

‘ Wait until the character “A” is received
serially and put next character into B0
DEBUGIN [WAIT(“A”),B0]

‘ Skip 2 chars and grab a 4 digit decimal number
DEBUGIN [SKIP 2,DEC4 B0]

‘ Wait for value with timeout
DEBUGIN 100, timesup, [B0]



PICBASIC PRO Compiler

60

5.14.  DISABLE

DISABLE

DISABLE both debug and interrupt processing following this instruction. 
Interrupts can still occur but the BASIC interrupt handler in the PICBASIC
PRO program and the debug monitor will not be executed until an
ENABLE is encountered.

DISABLE and ENABLE are pseudo-ops in that they give the compiler
directions, rather than actually generate code.  See ON DEBUG and  ON
INTERRUPT for more information.

DISABLE ‘ Disable interrupts in handler
myint: led = 1 ‘ Turn on LED when interrupted

Resume ‘ Return to main program
Enable ‘ Enable interrupts after handler



PICBASIC PRO Compiler

61

5.15.  DISABLE DEBUG

DISABLE DEBUG

DISABLE DEBUG  processing following this instruction.  The debug
monitor will not be called between instructions until an ENABLE or
ENABLE DEBUG is encountered.

DISABLE DEBUG and ENABLE DEBUG are pseudo-ops in that they give
the compiler directions, rather than actually generate code.  See ON
DEBUG for more information.

DISABLE DEBUG ‘ Disable debug monitor calls



PICBASIC PRO Compiler

62

5.16.  DISABLE INTERRUPT

DISABLE INTERRUPT

DISABLE INTERRUPT processing following this instruction.  Interrupts
can still occur but the BASIC interrupt handler in the PICBASIC PRO
program will not be executed until an ENABLE or ENABLE INTERRUPT is
encountered.

DISABLE INTERRUPT and ENABLE INTERRUPT are pseudo-ops in that
they give the compiler directions, rather than actually generate code.  See
ON INTERRUPT for more information.

DISABLE INTERRUPT ‘ Disable interrupts in
handler

myint: led = 1 ‘ Turn on LED when interrupted
Resume ‘ Return to main program
Enable Interrupt ‘ Enable interrupts after

handler



PICBASIC PRO Compiler

63

5.17.  DTMFOUT

DTMFOUT Pin,{Onms,Offms,}[Tone{,Tone...}]

Produce DTMF touch Tone sequence on Pin.  Pin is automatically
made an output.  Pin may be a constant, 0-15, or a variable that
contains a number 0-15 (e.g. B0) or a pin name (e.g. PORTA.0).

Onms is the number of milliseconds to sound each tone and Offms is the
number of milliseconds to pause between each tone.  If they are not
specified, Onms defaults to 200ms and Offms defaults to 50ms.

Tones are numbered 0-15.  Tones 0-9 are the same as on a telephone
keypad.  Tone 10 is the * key, Tone 11 is the # key and Tones 12-15
correspond to the extended keys A-D.

DTMFOUT uses FREQOUT to generate the dual tones.  FREQOUT
generates tones using a form of pulse width modulation.  The raw data
coming out of the pin looks pretty scary.  Some kind of filter is usually
necessary to smooth the signal to a sine wave and get rid of some of the
harmonics that are generated:

DTMFOUT works best with a 20MHz or 40MHz oscillator.  It can also work
with a 10MHz or 8MHz oscillator and even at 4MHz, although it will start
to get very hard to filter and be of fairly low amplitude.  Any other
frequency may not be used with DTMFOUT.

DTMFOUT is not supported on 12-bit core PIC MCUs due to RAM and
stack constraints.

‘ Send DTMF tones for 212 on Pin1
DTMFOUT PORTB.1,[2,1,2]



PICBASIC PRO Compiler

64

5.18.  EEPROM

EEPROM {Location,}[Constant{,Constant...}]

Store constants in on-chip EEPROM.  If the optional Location value is
omitted, the first EEPROM statement starts storing at address 0 and
subsequent statements store at the following locations.  If the Location
value is specified, it denotes the starting location where these values are
stored.

Constant can be a numeric constant or a string constant.  Only the least
significant byte of numeric values are stored.  Strings are stored as
consecutive bytes of ASCII values.  No length or terminator is
automatically added.

EEPROM only works with microcontrollers with on-chip EEPROM such as
the PIC12F683, PIC16F84 and the PIC16F87x series.  It will not work on
devices with on-chip I2C interfaced serial EEPROM like the 12CE67x and
16CE62x parts.  Since EEPROM is non-volatile memory, the data will
remain intact even if the power is turned off.

The data is stored in the EEPROM space only once at the time the
microcontroller is programmed, not each time the program is run.  WRITE
can be used to set the values of the on-chip EEPROM at runtime.  READ
is used to retrieve these stored DATA values at runtime.

‘ Store 10, 20 and 30 starting at location 4
EEPROM 4,[10,20,30]



PICBASIC PRO Compiler

65

5.19.  ENABLE

ENABLE

ENABLE debug and interrupt processing that was previously DISABLEd
following this instruction.

DISABLE and ENABLE are pseudo-ops in that they give the compiler
directions, rather than actually generate code.  See ON DEBUG and  ON
INTERRUPT for more information.

Disable ‘ Disable interrupts in handler
myint: led = 1 ‘ Turn on LED when interrupted

Resume ‘ Return to main program
ENABLE ‘ Enable interrupts after handler



PICBASIC PRO Compiler

66

5.20.  ENABLE DEBUG

ENABLE DEBUG

ENABLE DEBUG processing that was previously DISABLEd following this
instruction.

DISABLE DEBUG and ENABLE DEBUG are pseudo-ops in that they give
the compiler directions, rather than actually generate code.  See ON
DEBUG for more information.

ENABLE DEBUG ‘ Enable calls to the debug
monitor



PICBASIC PRO Compiler

67

5.21.  ENABLE INTERRUPT

ENABLE INTERRUPT

ENABLE INTERRUPT processing that was previously DISABLEd
following this instruction.

DISABLE INTERRUPT and ENABLE INTERRUPT are pseudo-ops in that
they give the compiler directions, rather than actually generate code.  See
ON INTERRUPT for more information.

Disable Interrupt ‘ Disable interrupts in
handler

myint: led = 1 ‘ Turn on LED when interrupted
Resume ‘ Return to main program
ENABLE INTERRUPT ‘ Enable interrupts after

handler



PICBASIC PRO Compiler

68

5.22.  END

END

Stop program execution and enter low power mode.  All of the I/O pins
remain in their current state.  END works by executing a Sleep instruction
continuously in a loop.

An END or STOP or GOTO should be placed at the end of every program to
keep it from falling off the end of memory and starting over.

END



PICBASIC PRO Compiler

69

5.23.  ERASECODE

ERASECODE Block

Some flash PIC MCUs, like the PIC18Fxxxx series, require a portion of
the code space to be erased before it can be rewritten with WRITECODE. 
On these devices, an erase is performed a block at a time.  An erase
block may be 32 words (64 bytes) or another size, depending on the
device.  This size is usually larger than the write block size.  See the
Microchip data sheet for information on the size of the erase block for the
particular PIC MCU you are using.

The first location of the block to be erased should be specified by Block. 
For PIC18Fxxxx devices, Block is a byte address rather than a word
address.  Be careful not to specify a Block that contains program code.

Flash program writes must be enabled in the configuration for the PIC
MCU at device programming time for ERASECODE to be able to erase.

Using this instruction on devices that do not support block erase may
cause a compilation error.

ERASECODE $100 ‘ Erase code block starting at
location $100



PICBASIC PRO Compiler

70

5.24.  FOR..NEXT

FOR Count = Start TO End {STEP {-} Inc}
{Body}

NEXT {Count}

The FOR..NEXT loop allows programs to execute a number of
statements (the Body) some number of times using a variable as a
counter.  Due to its complexity and versatility, FOR..NEXT is best
described step by step:

1) The value of Start is assigned to the index variable, Count. 
Count can be a variable of any type.

2) The Body is executed.  The Body is optional and can be omitted
(perhaps for a delay loop).

3) The value of Inc is added to (or subtracted from if “-” is
specified) Count.  If no STEP clause is defined, Count is
incremented by one.

4) If Count has not passed End or overflowed the variable type,
execution returns to Step 2.

If the loop needs to Count to more than 255, a word- or long-sized
variable must be used.

FOR i = 1 TO 10 ‘ Count from 1 to 10
Serout 0,N2400,[#i,” “] ‘ Send each number to

Pin0 serially
NEXT i ‘ Go back to and do next

count
Serout 0,N2400,[10] ‘ Send a linefeed

FOR B2 = 20 TO 10 STEP -2 ‘ Count from 20 to
10 by 2

Serout 0,N2400,[#B2,” “] ‘ Send each number
to Pin0 serially

NEXT B2 ‘ Go back to and do next
count

Serout 0,N2400,[10] ‘ Send a linefeed



PICBASIC PRO Compiler

71

5.25.  FREQOUT

FREQOUT Pin,Onms,Frequency1{,Frequency2}

Produce the Frequency(s) on Pin for Onms milliseconds.  Pin is
automatically made an output.  Pin may be a constant, 0-15, or a
variable that contains a number 0-15 (e.g. B0) or a pin name (e.g.
PORTA.0).

One or two different frequencies from 0 to 32767 Hertz may be produced
at a time.

FREQOUT generates tones using a form of pulse width modulation.  The
raw data coming out of the pin looks pretty scary.  Some kind of filter is
usually necessary to smooth the signal to a sine wave and get rid of
some of the harmonics that are generated:

FREQOUT works best with a 20MHz or 40MHz oscillator.  It can also work
with a 10MHz or 8MHz oscillator and even at 4MHz, although it will start
to get very hard to filter and be of fairly low amplitude.  Any other
frequency will cause FREQOUT to generate a frequency that is a ratio of
the actual oscillator used and 20MHz.

FREQOUT is not supported on 12-bit core PIC MCUs due to RAM and
stack constraints.

‘ Send 1KHz tone on Pin1 for 2 seconds
FREQOUT PORTB.1,2000,1000

‘ Send 350Hz / 440Hz (Dial Tone) for 2 seconds
FREQOUT PORTB.1,2000,350,440



PICBASIC PRO Compiler

72

5.26.  GOSUB

GOSUB Label

Jump to the subroutine at Label saving its return address on the stack. 
Unlike GOTO, when a RETURN statement is reached after executing a
GOSUB, execution resumes with the statement following that last
executed GOSUB statement.

An unlimited number of subroutines may be used in a program. 
Subroutines may also be nested.  In other words, it is possible for a
subroutine to call another subroutine.  Such subroutine nesting must be
restricted to no more than four nested levels for 12- and 14-bit core
devices, 12 levels for 17Cxxx parts and 27 levels for 18Xxxxx parts.

GOSUB beep ‘ Execute subroutine named beep
...

beep: High 0 ‘ Turn on LED connected to Pin0
Sound 1,[80,10] ‘ Beep speaker connected to

Pin1
Low 0 ‘ Turn off LED connected to Pin0
Return ‘ Go back to main routine that

called us



PICBASIC PRO Compiler

73

5.27.  GOTO

GOTO Label

Program execution continues with the statements at Label.

GOTO send ‘ Jump to statement labeled send
...

send: Serout 0,N2400,[“Hi”] ‘ Send “Hi” out Pin0
serially



PICBASIC PRO Compiler

74

5.28.  HIGH

HIGH Pin

Make the specified Pin high.  Pin is automatically made an output.  Pin
may be a constant, 0-15, or a variable that contains a number 0-15 (e.g.
B0) or a pin name (e.g. PORTA.0).

HIGH 0 ‘ Make Pin0 an output and set
it high (~5 volts)

HIGH PORTA.0 ‘ Make PORTA, pin 0 an output
and set it high (~5 volts)

led Var PORTB.0 ‘ Define LED pin
HIGH led ‘ Make LED pin an output and

set it high (~5 volts)

Alternatively, if the pin is already an output, a much quicker and shorter
way (from a generated code standpoint) to set it high would be:

PORTB.0 = 1 ‘ Set PORTB pin 0 high



PICBASIC PRO Compiler

75

5.29.  HPWM

HPWM Channel,Dutycycle,Frequency

Output a pulse width modulated pulse train using PWM hardware
available on some PIC MCUs.  It can run continuously in the background
while the program is executing other instructions.

Channel specifies which hardware PWM channel to use.  Some devices
have between 1 and 5 PWM Channels that can be used with HPWM.  The
Microchip data sheet for the particular device shows the fixed hardware
pin for each Channel.  For example, for a PIC16F877, Channel 1 is
CCP1 which is pin PORTC.2.  Channel 2 is CCP2 which is pin
PORTC.1.

Some devices, such as the PIC18F452, have alternate pins that may be
used for HPWM.  The following DEFINEs allow using these pins:

DEFINE CCP1_REG PORTC ‘ Channel 1 port
DEFINE CCP1_BIT 2 ‘ Channel 1 bit
DEFINE CCP2_REG PORTC ‘ Channel 2 port
DEFINE CCP2_BIT 1 ‘ Channel 2 bit
DEFINE CCP3_REG PORTG ‘ Channel 3 port
DEFINE CCP3_BIT 0 ‘ Channel 3 bit
DEFINE CCP4_REG PORTG ‘ Channel 4 port
DEFINE CCP4_BIT 3 ‘ Channel 4 bit
DEFINE CCP5_REG PORTG ‘ Channel 5 port
DEFINE CCP5_BIT 4 ‘ Channel 5 bit

Dutycycle specifies the on/off (high/low) ratio of the signal.  It ranges
from 0 to 255, where 0 is off (low all the time) and 255 is on (high) all the
time.  A value of 127 gives a 50% duty cycle (square wave).

Frequency is the desired frequency of the PWM signal.  On devices
with 2 channels, the Frequency must be the same on both channels. 
Not all frequencies are available at all oscillator settings.  For the non-
long versions of PBP (PBP and PBPW), the highest frequency at any
oscillator speed is 32767Hz.  The lowest usable HPWM Frequency at
each oscillator setting is shown in the following table:



PICBASIC PRO Compiler

76

OSC 14-bit core and 18Xxxxx 17Cxxx

4MHz 245Hz 3907Hz

8MHz 489Hz 7813Hz

10MHz 611Hz 9766Hz

12MHz 733Hz 11719Hz

16MHz 977Hz 15625Hz

20MHz 1221Hz 19531Hz

24MHz 1465Hz 23437Hz

25MHz 1527Hz 24415Hz

32MHz 1953Hz 31249Hz

33MHz 2015Hz 32227Hz

40MHz 2441Hz na

48MHz 2929Hz na

64MHz 3905Hz na

The following DEFINEs specify which timer, 1 or 2, to use with PWM
channel 2 and PWM channel 3 for the PIC17C7xx devices.  The default
is timer 1 if no DEFINE is specified.

DEFINE HPWM2_TIMER 1 ‘ Hpwm channel 2 timer
DEFINE HPWM3_TIMER 1 ‘ Hpwm channel 3 timer

After an HPWM command, the CCP control register is left in PWM mode. 
If the CCP pin is to be used as a normal I/O pin after an HPWM command,
the CCP control register will need to be set to PWM off.  See the
Microchip data sheet for the particular device for more information.

HPWM 1,127,1000 ‘ Send a 50% duty cycle PWM
signal at 1kHz

HPWM 1,64,2000 ‘ Send a 25% duty cycle PWM
signal at 2kHz



PICBASIC PRO Compiler

77

5.30.  HSERIN

HSERIN {ParityLabel,}{Timeout,Label,}[Item{,...}]

Receive one or more Items from the hardware serial port on devices
that support asynchronous serial communications in hardware.

HSERIN is one of several built-in asynchronous serial functions.  It can
only be used with devices that have a hardware USART.  See the device
data sheet for information on the serial input pin and other parameters. 
The serial parameters and baud rate are specified using DEFINEs:

‘ Set receive register to receiver enabled
DEFINE HSER_RCSTA 90h

‘ Set transmit register to transmitter enabled
DEFINE HSER_TXSTA 20h

‘ Set baud rate
DEFINE HSER_BAUD 2400

‘ Set SPBRG directly (normally set by HSER_BAUD)
DEFINE HSER_SPBRG 25

HSER_RCSTA, HSER_TXSTA and HSER_SPBRG simply set each
respective PIC MCU register, RCSTA, TXSTA and SPBRG to the
hexadecimal value DEFINEd, once, at the beginning of the program.  See
the Microchip data sheet for the device for more information on each of
these registers.

The TXSTA register BRGH bit (bit 2) controls the high speed mode for
the baud rate generator.  Certain baud rates at certain oscillator speeds
require this bit to be set to operate properly.  To do this, set HSER_TXSTA
to 24h instead of 20h.  All baud rates at all oscillator speeds may not be
supported by the device.  See the Microchip data sheet for the hardware
serial port baud rate tables and additional information.

HSERIN assumes a 4MHz oscillator when calculating the baud rate.  To
maintain the proper baud rate timing with other oscillator values, be sure
to DEFINE the OSC setting to the new oscillator value.

An optional Timeout and Label may be included to allow the program
to continue if a character is not received within a certain amount of time. 



PICBASIC PRO Compiler

78

Timeout is specified in 1 millisecond units.  If no character is received
during the Timeout time, the program will exit the HSERIN command
and jump to Label.

The serial data format defaults to 8N1, 8 data bits, no parity bit and 1 stop
bit. 7E1 (7 data bits, even parity, 1 stop bit) or 7O1 (7data bits, odd parity,
1 stop bit) can be enabled using one of the following DEFINEs:

‘ Use only if even parity desired
DEFINE HSER_EVEN 1

‘ Use only if odd parity desired
DEFINE HSER_ODD 1

‘ Use 8 bits + parity
DEFINE HSER_BITS 9

The parity setting, along with all of the other HSER DEFINEs, affect both
HSERIN and HSEROUT.

An optional ParityLabel may be included in the statement.  The
program will continue at this location if a character with a parity error is
received.  It should only be used if parity is enabled using one of the
preceding DEFINEs.

As the hardware serial port only has a 2 byte input buffer, it can easily
overflow if characters are not read from it often enough.  When this
happens, the USART stops accepting new characters and needs to be
reset.  This overflow error can be reset by toggling the CREN bit in the
RCSTA register.  A DEFINE can be used to automatically clear this error. 
However, you will not know that an error has occurred and characters
may have been lost.

DEFINE HSER_CLROERR 1

To manually clear an overrun error:

RCSTA.4 = 0
RCSTA.4 = 1

Since the serial reception is done in hardware, it is not possible to set the
levels to an inverted state to eliminate an RS-232 driver.  Therefore a
suitable driver should be used with HSERIN.



PICBASIC PRO Compiler

79

On devices with 2 hardware serial ports, HSERIN will only use the first
port.  The second port may read using HSERIN2.

HSERIN supports the same data modifiers that SERIN2 does.  Refer to
the section on SERIN2 for this information.

Modifier Operation

BIN{1..32} Receive binary digits

DEC{1..10} Receive decimal digits

HEX{1..8} Receive upper case hexadecimal digits

SKIP n Skip n received characters

STR ArrayVar\n{\c} Receive string of n characters
optionally ended in character c

WAIT ( ) Wait for sequence of characters

WAITSTR ArrayVar{\n} Wait for character string

HSERIN [B0,DEC W1]

HSERIN 100, timesup, [B0]



PICBASIC PRO Compiler

80

5.31.  HSERIN2

HSERIN2 {ParityLabel,}{Timeout,Label,}[Item{,...}]

Receive one or more Items from the second hardware serial port on
devices that support asynchronous serial communications in hardware.

HSERIN2 works the same as HSERIN with the exception that is uses the
second hardware serial port on devices that have 2 ports such as the
PIC18F8720  It can only be used with devices that have 2 hardware
USARTs.  See the device data sheet for information on the serial output
pin and other parameters and the above section on HSERIN for more
command details.  The serial parameters and baud rate are specified
using DEFINEs:

‘ Set receive register to receiver enabled
DEFINE HSER2_RCSTA 90h

‘ Set transmit register to transmitter enabled
DEFINE HSER2_TXSTA 20h

‘ Set baud rate
DEFINE HSER2_BAUD 2400

‘ Set SPBRG2 (normally set by HSER2_BAUD)
DEFINE HSER2_SPBRG 25

‘ Use only if even parity desired
DEFINE HSER2_EVEN 1

‘ Use only if odd parity desired
DEFINE HSER2_ODD 1

‘ Use 8 bits + parity
DEFINE HSER2_BITS 9

‘ Automatically clear overflow errors
DEFINE HSER2_CLROERR 1

HSERIN2 [B0,DEC W1]

HSERIN2 100, timesup, [B0]



PICBASIC PRO Compiler

81

5.32.  HSEROUT

HSEROUT [Item{,Item...}]

Send one or more Items to the hardware serial port on devices that
support asynchronous serial communications in hardware.

HSEROUT is one of several built-in asynchronous serial functions.  It can
only be used with devices that have a hardware USART.  See the device
data sheet for information on the serial output pin and other parameters. 
The serial parameters and baud rate are specified using DEFINEs:

‘ Set receive register to receiver enabled
DEFINE HSER_RCSTA 90h

‘ Set transmit register to transmitter enabled
DEFINE HSER_TXSTA 20h

‘ Set baud rate
DEFINE HSER_BAUD 2400

‘ Set SPBRG directly (normally set by HSER_BAUD)
DEFINE HSER_SPBRG 25

HSER_RCSTA, HSER_TXSTA and HSER_SPBRG simply set each
respective PIC MCU register, RCSTA, TXSTA and SPBRG to the
hexadecimal value DEFINEd, once, at the beginning of the program.  See
the Microchip data sheet for the device for more information on each of
these registers.

The TXSTA register BRGH bit (bit 2) controls the high speed mode for
the baud rate generator.  Certain baud rates at certain oscillator speeds
require this bit to be set to operate properly.  To do this, set HSER_TXSTA
to 24h instead of 20h.  All baud rates at all oscillator speeds may not be
supported by the device.  See the Microchip data sheet for the hardware
serial port baud rate tables and additional information.

HSEROUT assumes a 4MHz oscillator when calculating the baud rate.  To
maintain the proper baud rate timing with other oscillator values, be sure
to DEFINE the OSC setting to the new oscillator value.



PICBASIC PRO Compiler

82

The serial data format defaults to 8N1, 8 data bits, no parity bit and 1 stop
bit. 7E1 (7 data bits, even parity, 1 stop bit) or 7O1 (7data bits, odd parity,
1 stop bit) can be enabled using one of the following DEFINEs:

‘ Use only if even parity desired
DEFINE HSER_EVEN 1

‘ Use only if odd parity desired
DEFINE HSER_ODD 1

‘ Use 8 bits + parity
DEFINE HSER_BITS 9

The parity setting, along with all of the other HSER DEFINEs, affect both
HSERIN and HSEROUT.

Since the serial transmission is done in hardware, it is not possible to set
the levels to an inverted state to eliminate an RS-232 driver.  Therefore a
suitable driver should be used with HSEROUT.

On devices with 2 hardware serial ports, HSEROUT will only use the first
port.  The second port may be accessed using HSEROUT2.

HSEROUT supports the same data modifiers that SEROUT2 does.  Refer
to the section on SEROUT2 for this information.

Modifier Operation

{I}{S}BIN{1..32} Send binary digits

{I}{S}DEC{1..10} Send decimal digits

{I}{S}HEX{1..8} Send hexadecimal digits

REP c\n Send character c repeated n times

STR ArrayVar{\n} Send string of n characters

‘ Send the decimal value of B0 followed by a
linefeed out the hardware USART
HSEROUT [DEC B0,10]



PICBASIC PRO Compiler

83

5.33.  HSEROUT2

HSEROUT2 [Item{,Item...}]

Send one or more Items to the second hardware serial port on devices
that support asynchronous serial communications in hardware.

HSEROUT2 works the same as HSEROUT with the exception that is uses
the second hardware serial port on devices that have 2 ports such as the
PIC18F8720.  It can only be used with devices that have 2 hardware
USARTs.  See the device data sheet for information on the serial output
pin and other parameters and the above section on HSEROUT for more
command details.  The serial parameters and baud rate are specified
using DEFINEs:

‘ Set receive register to receiver enabled
DEFINE HSER2_RCSTA 90h

‘ Set transmit register to transmitter enabled
DEFINE HSER2_TXSTA 20h

‘ Set baud rate
DEFINE HSER2_BAUD 2400

‘ Set SPBRG2 (normally set by HSER2_BAUD)
DEFINE HSER2_SPBRG 25

‘ Use only if even parity desired
DEFINE HSER2_EVEN 1

‘ Use only if odd parity desired
DEFINE HSER2_ODD 1

‘ Use 8 bits + parity
DEFINE HSER2_BITS 9

‘ Send the decimal value of B0 followed by a
linefeed out the hardware USART
HSEROUT2 [DEC B0,10]



PICBASIC PRO Compiler

84

5.34.  I2CREAD

I2CREAD DataPin,ClockPin,Control,{Address,}
[Var{,Var...}]{,Label}

Send Control and optional Address bytes out the ClockPin and
DataPin and store the byte(s) received into Var.  ClockPin and
DataPin may be a constant, 0-15, or a variable that contains a number
0-15 (e.g. B0) or a pin name (e.g. PORTA.0).

I2CREAD and I2CWRITE can be used to read and write data to a serial
EEPROM with a 2-wire I2C interface such as the Microchip 24LC01B and
similar devices.  This allows data to be stored in external non-volatile
memory so that it can be maintained even after the power is turned off. 
These commands operate in the I2C master mode and may also be used
to talk to other devices with an I2C interface like temperature sensors and
A/D converters.

For 12-bit core PIC MCUs only, the I2C clock and data pins are fixed at
compile time by DEFINEs.  They still must be specified in the I2CREAD
statements, though this information is ignored by the compiler.

DEFINE I2C_SCL PORTA,1 ‘ For 12-bit core only
DEFINE I2C_SDA PORTA,0 ‘ For 12-bit core only

The upper 7 bits of the Control byte contain the control code along with
chip select or additional address information, depending on the particular
device.  The low order bit is an internal flag indicating whether it is a read
or write command and should be kept clear.

This format for the Control byte is different than the format used by the
original PICBASIC Compiler.  Be sure to use this format with PBP I2C
operations.

For example, when communicating with a 24LC01B, the control code is
%1010 and the chip selects are unused so the Control byte would be
%10100000 or $A0.  Formats of Control bytes for some of the different
parts follows:



PICBASIC PRO Compiler

85

Device Capacity Control Address size

24LC01B 128 bytes %1010xxx0 1 byte

24LC02B 256 bytes %1010xxx0 1 byte

24LC04B 512 bytes %1010xxb0 1 byte

24LC08B 1K bytes %1010xbb0 1 byte

24LC16B 2K bytes %1010bbb0 1 byte

24LC32B 4K bytes %1010ddd0 2 bytes

24LC65 8K bytes %1010ddd0 2 bytes

bbb = block select (high order address) bits
ddd = device select bits
xxx = don’t care

The Address size sent (byte or word) is determined by the size of the
variable that is used.  If a byte-sized variable is used for the Address, an
8-bit address is sent.  If a word-sized variable is used, a 16-bit address is
sent.  Be sure to use the proper sized variable for the device you wish to
communicate with.  Constants should not be used for the Address as
the size can vary dependent on the size of the constant.  Also,
expressions should not be used as they can cause an improper Address
size to be sent.

Once Control and/or Address has been sent to the device, the data
specified between the square brackets is read from the device.  If a word-
or long-sized Var is specified, the bytes are read and stored into the Var
highest byte first, followed by the lower byte(s).  This order is different
than the way variables are normally stored, low byte first.

A modifier, STR, may be included before the variable name.  This can
load an entire array (string) at once.  If STR is specified, the following
variable must be the name of a word or byte array, followed by a
backslash (\) and a count:

a Var Byte[8]
addr Var Byte

addr = 0
I2CREAD PORTC.4,PORTC.3,$a0,addr,[STR a\8]

If a word- or long-sized array is specified, the bytes that comprise each
element are read lowest byte first.  This is the opposite of how simple



PICBASIC PRO Compiler

86

words and longs are read and is consistent with the way the compiler
normally stores word- and long-sized variables.

If the optional Label is included, this label will be jumped to if an
acknowledge is not received from the I2C device.

The I2C instructions can be used to access the on-chip serial EEPROM
on the 12CExxx and 16CExxx devices.  Simply specify the pin names for
the appropriate internal lines as part of the I2C command and place the
following DEFINE at the top of the program:

DEFINE I2C_INTERNAL 1

For the 12CE67x devices, the data line is GPIO.6 and the clock line is
GPIO.7.  For the 16CE62x devices, the data line is EEINTF.1 and the
clock line is EEINTF.2.  See the Microchip data sheets for these devices
for more information.

The timing of the I2C instructions is set so that standard speed devices
(100kHz) will be accessible at clock speeds up to 8MHz.  Fast mode
devices (400kHz) may be used up to 20MHz.  If it is desired to access a
standard speed device at above 8MHz, the following DEFINE should be
added to the program:

DEFINE I2C_SLOW  1

Because of memory and stack constraints, this DEFINE for 12-bit core
PIC MCUs does not do anything.  Low-speed (100 kHz) I2C devices may
be used up to 4MHz.  Above 4MHz, high-speed (400kHz) devices should
be used.

Transfer on the I2C bus can be paused by the receiving device by its
holding the clock line low (not supported on 12-bit core PIC MCUs).  To
enable this the following DEFINE should be added to the program:

DEFINE I2C_HOLD  1

The I2C clock and data lines should be pulled up to Vcc with a 4.7K
resistor per the following schematic as they are both run in a bi-
directional open-collector manner.



PICBASIC PRO Compiler

87

To make the I2C clock line bipolar instead of open-collector the following
DEFINE may be added to the program:

DEFINE I2C_SCLOUT  1

addr Var Byte
cont Con %10100000

addr = 17 ‘ Set address to 17
‘ Read data at address 17 into B2
I2CREAD PORTA.0,PORTA.1,cont,addr,[B2]

See the Microchip “Non-Volatile Memory Products Data Book” for more
information on these and other devices that may be used with the
I2CREAD and I2CWRITE commands.



PICBASIC PRO Compiler

88

5.35.  I2CWRITE

I2CWRITE DataPin,ClockPin,Control,{Address,}
[Value{,Value...}]{,Label}

I2CWRITE sends Control and optional Address out the I2C ClockPin
and DataPin followed by Value.  ClockPin and DataPin may be a
constant, 0-15, or a variable that contains a number 0-15 (e.g. B0) or a
pin name (e.g. PORTA.0).

For 12-bit core PIC MCUs only, the I2C clock and data pins are fixed at
compile time by DEFINEs.  They still must be specified in the I2CWRITE
statements, though this information is ignored by the compiler.

DEFINE I2C_SCL PORTA,1 ‘ For 12-bit core only
DEFINE I2C_SDA PORTA,0 ‘ For 12-bit core only

The Address size sent (byte or word) is determined by the size of the
variable that is used.  If a byte-sized variable is used for the Address, an
8-bit address is sent.  If a word-sized variable is used, a 16-bit address is
sent.  Be sure to use the proper sized variable for the device you wish to
communicate with.  Constants should not be used for the Address as
the size can vary dependent on the size of the constant.  Also,
expressions should not be used as they can cause an improper Address
size to be sent.

When writing to a serial EEPROM, it is necessary to wait 10ms (device
dependent - check its data sheet) for the write to complete before
attempting communication with the device again.  If a subsequent
I2CREAD or I2CWRITE is attempted before the write is complete, the
access will be ignored.

While a single I2CWRITE statement may be used to write multiple bytes
at once, doing so may violate the above write timing requirement for
serial EEPROMs.  Some serial EEPROMS let you write multiple bytes
into a single page before necessitating the wait.  Check the data sheet for
the specific device you are using for these details.  The multiple byte
write feature may also be useful with I2C devices other than serial
EEPROMs that don’t have to wait between writes.

If a word- or long-sized Value is specified, the bytes are sent highest
byte first, followed by the lower byte(s).  This order is different than the
way variables are normally stored, low byte first.



PICBASIC PRO Compiler

89

A modifier, STR, may be included before the variable name.  This can be
used to write an entire array (string) at once and take advantage of a
serial EEPROM’s page mode.  The data must fit into a single SEEPROM
page.  The page size is dependent on the particular SEEPROM device. 
If STR is specified, the following variable must be the name of a word or
byte array, followed by a backslash (\) and a count:

a Var Byte[8]
addr Var Byte

addr = 0
I2CWRITE PORTC.4,PORTC.3,$a0,addr,[STR a\8]

If a word- or long-sized array is specified, the bytes that comprise each
element are written lowest byte first.  This is the opposite of how simple
words and longs are written and is consistent with the way the compiler
normally stores word- and long-sized variables.

If the optional Label is included, this label will be jumped to if an
acknowledge is not received from the I2C device.

The I2C instructions can be used to access the on-chip serial EEPROM
on the 12CExxx and 16CExxx devices.  Simply specify the pin names for
the appropriate internal lines as part of the I2C command and place the
following DEFINE at the top of the program:

DEFINE I2C_INTERNAL 1

For the 12CE67x devices, the data line is GPIO.6 and the clock line is
GPIO.7.  For the 16CE62x devices, the data line is EEINTF.1 and the
clock line is EEINTF.2.  See the Microchip data sheets for these devices
for more information.

The timing of the I2C instructions is set so that standard speed devices
(100kHz) will be accessible at clock speeds up to 8MHz.  Fast mode
devices (400kHz) may be used up to 20MHz.  If it is desired to access a
standard speed device at above 8MHz, the following DEFINE should be
added to the program:

DEFINE I2C_SLOW  1

Because of memory and stack constraints, this DEFINE for 12-bit core
PIC MCUs does not do anything.  Low-speed (100 kHz) I2C devices may



PICBASIC PRO Compiler

90

be used up to 4MHz.  Above 4MHz, high-speed (400kHz) devices should
be used.

Transfer on the I2C bus can be paused by the receiving device by its
holding the clock line low (not supported on 12-bit core PIC MCUs).  To
enable this the following DEFINE should be added to the program:

DEFINE I2C_HOLD  1

To make the I2C clock line bipolar instead of open-collector the following
DEFINE may be added to the program:

DEFINE I2C_SCLOUT  1

See the I2CREAD command above for the rest of the story.

addr Var Byte
cont Con %10100000

addr = 17 ‘ Set address to 17
‘ Send the byte 6 to address 17
I2CWRITE PORTA.0,PORTA.1,cont,addr,[6]
Pause 10 ‘ Wait 10ms for write to

complete
addr = 1 ‘ Set address to 1
‘ Send the byte in B2 to address 1
I2CWRITE PORTA.0,PORTA.1,cont,addr,[B2]
Pause 10 ‘ Wait 10ms for write to

complete



PICBASIC PRO Compiler

91

5.36.  IF..THEN

IF Comp {AND/OR Comp...} THEN Label

IF Comp {AND/OR Comp...} THEN Statement...

IF Comp {AND/OR Comp...} THEN
Statement...

ELSE
Statement...

ENDIF

Performs one or more comparisons.  Each Comp term can relate a
variable to a constant or other variable and includes one of the
comparison operators listed previously.

IF..THEN evaluates the comparison terms for true or false.  If it
evaluates to true, the operation after the THEN is executed.  If it evaluates
to false, the operation after the THEN is not executed.  Comparisons that
evaluate to 0 are considered false.  Any other value is considered true.

For PBP and PBPW, all comparisons are unsigned since they only
supports unsigned types.  IF..THEN cannot be used to check if a
number is less than 0.  Using PBPL, signed comparisons may be
performed.

It is essential to use parenthesis to specify the order in which the
operations should be tested.  Otherwise, operator precedence will
determine it for you and the result may not be as expected.

IF..THEN can operate in 2 manners.  In one form, the THEN in an
IF..THEN is essentially a GOTO.  If the condition is true, the program will
GOTO the label after the THEN.  If the condition evaluates to false, the
program will continue at the next line after the IF..THEN.

If Pin0 = 0 Then pushd ‘ If button connected to
Pin0 is pushed (0), jump
to label pushd

If B0 >= 40 Then old ‘ If the value in
variable B0 is greater
than or equal to 40,
jump to old



PICBASIC PRO Compiler

92

If PORTB.0 Then itson ‘ If PORTB, pin 0 is
high (1), jump to itson

If (B0 = 10) And (B1 = 20) Then loop

In the second form, IF..THEN can conditionally execute a group of
Statements following the THEN.  The Statements may be placed after
the THEN or may be on another line and followed by an optional ELSE
and non-optional ENDIF to complete the structure.

If B0 <> 10 Then B0 = B0 + 1: B1 = B1 - 1

If B0 <> 10 Then
B0 = B0 + 1
B1 = B1 - 1

Endif

If B0 = 20 Then
led = 1

Else
led = 0

Endif



PICBASIC PRO Compiler

93

5.37.  INPUT

INPUT Pin

Makes the specified Pin an input.  Pin may be a constant, 0-15, or a
variable that contains a number 0-15 (e.g. B0) or a pin name (e.g.
PORTA.0).

INPUT 0 ‘ Make Pin0 an input
INPUT PORTA.0 ‘ Make PORTA, pin 0 an input

Alternatively, the pin may be set to an input in a much quicker and shorter
way (from a generated code standpoint):

TRISB.0 = 1 ‘ Set PORTB, pin 0 to an input

All of the pins on a port may be set to inputs by setting the entire TRIS
register at once:

TRISB = %11111111 ‘ Set all of PORTB to inputs



PICBASIC PRO Compiler

94

5.38.  LCDIN

LCDIN {Address,}[Var{,Var...}]

Read LCD RAM at Address and store data to Var.

LCDs have RAM onboard that is used for character memory.  Most LCDs
have more RAM available that is necessary for the displayable area. 
This RAM can be written using the LCDOUT instruction.  The LCDIN
instruction allows this RAM to be read.

CG (character generator) RAM runs from address $40 to $7f.  Display
data RAM starts at address $80.  See the data sheet for the specific LCD
for these addresses and functions.

It is necessary to connect the LCD read/write line to a PIC MCU pin so
that it may be controlled to select either a read (LCDIN) or write (LCDOUT)
operation.  Two DEFINEs control the pin address:

DEFINE LCD_RWREG PORTE ‘ LCD read/write pin
port

DEFINE LCD_RWBIT 2 ‘ LCD read/write pin bit

See LCDOUT for information on connecting an LCD to a PIC MCU.

LCDIN [B0]



PICBASIC PRO Compiler

95

5.39.  LCDOUT

LCDOUT Item{,Item...}

Display Items on an intelligent Liquid Crystal Display.  PBP supports
LCD modules with a Hitachi 44780 controller or equivalent.  These LCDs
usually have a 14- or 16-pin single- or dual-row header at one edge.

If a pound sign (#) precedes an Item, the ASCII representation for each
digit is sent to the LCD.  LCDOUT (on all devices except 12-bit core) can
also use any of the modifiers used with SEROUT2.  See the section on
SEROUT2 for this information.

Modifier Operation

{I}{S}BIN{1..32} Send binary digits

{I}{S}DEC{1..10} Send decimal digits

{I}{S}HEX{1..8} Send hexadecimal digits

REP c\n Send character c repeated n times

STR ArrayVar{\n} Send string of n characters

A program should wait for up to half a second before sending the first
command to an LCD.  It can take quite a while for an LCD to start up.

The LCD is initialized the first time any character or command is sent to it
using LCDOUT.  If it is powered down and then powered back up for some
reason during operation, an internal flag can be reset to tell the program
to reinitialize it the next time it uses LCDOUT:

FLAGS = 0

Commands are sent to the LCD by sending a $FE followed by the
command.  Some useful commands are listed in the following table:



PICBASIC PRO Compiler

96

Command Operation

$FE, 1 Clear display

$FE, 2 Return home

$FE, $0C Cursor off

$FE, $0E Underline cursor on

$FE, $0F Blinking cursor on

$FE, $10 Move cursor left one position

$FE, $14 Move cursor right one position

$FE, $80 Move cursor to beginning of first line

$FE, $C0 Move cursor to beginning of second line

$FE, $94 Move cursor to beginning of third line

$FE, $D4 Move cursor to beginning of fourth line

Note that there are commands to move the cursor to the beginning of the
different lines of a multi-line display.  For most LCDs, the displayed
characters and lines are not consecutive in display memory - there can
be a break in between locations.  For most 16x2 displays, the first line
starts at $80 and the second line starts at $C0.  The command:

LCDOUT $FE, $80 + 4

sets the display to start writing characters at the forth position of the first
line.  16x1 displays are usually formatted as 8x2 displays with a break
between the memory locations for the first and second 8 characters.  4-
line displays also have a mixed up memory map, as shown in the table
above.

See the data sheet for the particular LCD device for the character
memory locations and additional commands..

LCDOUT $FE,1,“Hello” ‘ Clear display and show
“Hello”

LCDOUT $FE,$C0,“World” ‘ Jump to second line
and show “World”

LCDOUT B0,#B1 ‘ Display B0 and decimal
ASCII value of B1

The LCD may be connected to the PIC MCU using either a 4-bit bus or
an 8-bit bus.  If an 8-bit bus is used, all 8 bits must be on one port.  If a 4-



PICBASIC PRO Compiler

97

bit bus is used, the top 4 LCD data bits must be connected to either the
bottom 4 or top 4 bits of one port.  Enable and Register Select may be
connected to any port pin.  R/W may be tied to ground if the LCDIN
command is not used.

PBP assumes the LCD is connected to specific pins unless told
otherwise using DEFINEs.  It assumes the LCD will be used with a 4-bit
bus with data lines DB4 - DB7 connected to PIC MCU PORTA.0 -
PORTA.3, Register Select to PORTA.4 and Enable to PORTB.3.

It is also preset to initialize the LCD to a 2 line display.

To change this setup, place one or more of the following DEFINEs, all in
upper-case, at the top of your PICBASIC PRO program:

‘ Set LCD Data port
DEFINE LCD_DREG PORTA
‘ Set starting Data bit (0 or 4) if 4-bit bus
DEFINE LCD_DBIT 0
‘ Set LCD Register Select port
DEFINE LCD_RSREG PORTA
‘ Set LCD Register Select bit
DEFINE LCD_RSBIT 4
‘ Set LCD Enable port
DEFINE LCD_EREG PORTB
‘ Set LCD Enable bit
DEFINE LCD_EBIT 3
‘ Set LCD bus size (4 or 8 bits)
DEFINE LCD_BITS 4
‘ Set number of lines on LCD
DEFINE LCD_LINES 2
‘ Set command delay time in us
DEFINE LCD_COMMANDUS 1500
‘ Set data delay time in us
DEFINE LCD_DATAUS 44

The following schematic shows one way to connect an LCD to a PIC
MCU, using the defaults for the PIC16F84:



PICBASIC PRO Compiler

98



PICBASIC PRO Compiler

99

5.40.  {LET}

{LET} Var = Value

Assign a Value to a Variable.  The Value may be a constant,  another
variable or the result of an expression.  Refer to the previous section on
operators for more information.  The keyword LET itself is optional.

LET B0 = B1 * B2 + B3
B0 = Sqr W1



PICBASIC PRO Compiler

100

5.41.  LOOKDOWN

LOOKDOWN Search,[Constant{,Constant...}],Var

The LOOKDOWN statement searches a list of 8-bit Constant values for
the presence of the Search value.  If found, the index of the matching
constant is stored in Var.  Thus, if the value is found first in the list, Var
is set to zero.  If second in the list, Var is set to one.  And so on.  If not
found, Var remains unchanged.

The constant list can be a mixture of numeric and string constants.  Each
character in a string is treated as a separate constant with the character's
ASCII value.  Array variables with a variable index may not be used in
LOOKDOWN although array variables with a constant index are allowed. 
Up to 255 (256 for PIC18Xxxxx) constants are allowed in the list.

Serin 1,N2400,B0 ‘ Get hexadecimal character
from Pin1 serially

LOOKDOWN B0,[“0123456789ABCDEF”],B1 ‘ Convert
hexadecimal
character in
B0 to
decimal
value B1

Serout 0,N2400,[#B1] ‘ Send decimal value to
Pin0 serially



PICBASIC PRO Compiler

101

5.42.  LOOKDOWN2

LOOKDOWN2 Search,{Test}[Value{,Value...}],Var

The LOOKDOWN2 statement searches a list of Values for the presence of
the Search value.  If found, the index of the matching constant is stored
in Var.  Thus, if the value is found first in the list, Var is set to zero.  If
second in the list, Var is set to one.  And so on.  If not found, Var
remains unchanged.

The optional parameter Test can be used to perform a test for other
than equal to (“=”) while searching the list.  For example, the list could be
searched for the first instance where the Search parameter is greater
than the Value by using “>” as the Test parameter.  If Test is left out,
“=” is assumed.

The Value list can be a mixture of 8- and 16-bit (and 32-bit for PBPL)
numeric and string constants and variables.  Each character in a string is
treated as a separate constant equal to the character's ASCII value. 
Expressions may not be used in the Value list, although they may be
used as the Search value.

Array variables with a variable index may not be used in LOOKDOWN2
although array variables with a constant index are allowed.  Up to 85 (256
for PIC18Xxxxx) values are allowed in the list.

LOOKDOWN2 generates code that is about 3 times larger than LOOKDOWN. 
If the search list is made up only of 8-bit constants and strings, use
LOOKDOWN.

LOOKDOWN2 W0,[512,W1,1024],B0
LOOKDOWN2 W0,>[1000,100,10],B0



PICBASIC PRO Compiler

102

5.43.  LOOKUP

LOOKUP Index,[Constant{,Constant...}],Var

The LOOKUP statement can be used to retrieve values from a table of 8-
bit constants.  If Index is zero, Var is set to the value of the first
Constant.  If Index is one, Var is set to the value of the second
Constant.  And so on.  If Index is greater than or equal to the number
of entries in the constant list, Var remains unchanged.

The constant list can be a mixture of numeric and string constants.  Each
character in a string is treated as a separate constant equal to the
character's ASCII value.  Array variables with a variable index may not be
used in LOOKUP although array variables with a constant index are
allowed.  Up to 255 (1024 for PIC18Xxxxx) constants are allowed in the
list.

For B0 = 0 To 5 ‘ Count from 0 to 5
LOOKUP B0,[“Hello!”],B1 ‘ Get character

number B0 from
string to variable
B1

Serout 0,N2400,[B1] ‘ Send character
in B1 to Pin0
serially

Next B0 ‘ Do next character



PICBASIC PRO Compiler

103

5.44.  LOOKUP2

LOOKUP2 Index,[Value{,Value...}],Var

The LOOKUP2 statement can be used to retrieve entries from a table of
Values.  If Index is zero, Var is set to the first Value.  If Index is one,
Var is set to the second Value.  And so on.  If Index is greater than or
equal to the number of entries in the list, and Var remains unchanged.

The Value list can be a mixture of 8-bit and 16-bit (and 32-bit for PBPL)
numeric and string constants and variables.  Each character in a string is
treated as a separate constant equal to the character's ASCII value. 
Expressions may not be used in the Value list, although they may be
used as the Index value.

Array variables with a variable index may not be used in LOOKUP2
although array variables with a constant index are allowed.  Up to 85
(1024 for PIC18Xxxxx) values are allowed in the list.

LOOKUP2 generates code that is about 3 times larger than LOOKUP.  If
the Value list is made up of only 8-bit constants and strings, use
LOOKUP.

LOOKUP2 B0,[256,512,1024],W1



PICBASIC PRO Compiler

104

5.45.  LOW

LOW Pin

Make the specified Pin low.  Pin is automatically made an output.  Pin
may be a constant, 0 - 15, or a variable that contains a number 0 - 15
(e.g. B0) or a pin name (e.g. PORTA.0).

LOW 0 ‘ Make Pin0 an output and set
it low (0 volts)

LOW PORTA.0 ‘ Make PORTA, pin 0 an output
and set it low (0 volts)

led Var PORTB.0 ‘ Define LED pin
LOW led ‘ Make LED pin an output and

set it low (0 volts)

Alternatively, if the pin is already an output, a much quicker and shorter
way (from a generated code standpoint) to set it low would be:

PORTB.0 = 0 ‘ Set PORTB, pin 0 low



PICBASIC PRO Compiler

105

5.46.  NAP

NAP Period

Places the microcontroller into low power mode for short periods of time.
During this NAP, power consumption is reduced to minimum.

NAP puts the processor to sleep for one Watchdog Timer period.  If the
Watchdog Timer is not enabled, the processor will sleep forever or until
an enabled interrupt or reset is received.

The Period is used to set the Watchdog timer prescaler for devices that
have a prescaler including the 12- and 14-bit core devices.  The 16-bit
core devices, including the 17Cxxx and 18Xxxxx parts use a postscaler
set at programming time to configure the Watchdog timeout period.  The
compiler will disregard the Period set in the NAP instruction for the 16-
bit core devices.

The listed Periods for the 12- and 14-bit core devices are only
approximate because the timing derived from the Watchdog Timer is R/C
driven and can vary greatly from chip to chip and over temperature. 
Since NAP uses the Watchdog Timer, its timing is independent of the
oscillator frequency.

Period Delay (Approx.)

0 18 milliseconds

1 36 milliseconds

2 72 milliseconds

3 144 milliseconds

4 288 milliseconds

5 576 milliseconds

6 1.152 seconds

7 2.304 seconds

NAP 7 ‘ Low power pause for about 2.3 seconds



PICBASIC PRO Compiler

106

5.47.  ON DEBUG

ON DEBUG GOTO Label

ON DEBUG allows a debug monitor routine to be executed between each
PICBASIC PRO instruction

The method by which this happens is similar to the method used by ON
INTERRUPT GOTO.  Once ON DEBUG GOTO is encountered, a call to the
specified debug label is inserted before each PICBASIC PRO instruction
in the program.  DISABLE DEBUG prevents the insertion of this call while
ENABLE DEBUG resumes the insertion of the call.

A monitor routine may be written that is activated before each instruction. 
This routine can send data to an LCD or to a serial comm program.  Any
program information may be displayed or even altered in this manner.  A
small monitor program example is posted on our web site.

A word-sized system variable that resides in BANK0 is required to provide
a place to store the address the program was at before the monitor
routine was called by ON DEBUG GOTO.  An additional byte-sized system
variable is required for PIC18Xxxxx parts.

DEBUG_ADDRESS Var Word Bank0 System
DEBUG_ADDRESSU Var Byte Bank0 System ‘PIC18 only

Another byte-sized variable may be used to return the level of the current
program stack:

DEBUG_STACK Var Byte Bank0 System

This level should never be greater than 4 for 12- and 14-bit core PIC
MCUs, 12 for PIC17Cxxx devices or 27 for PIC18Xxxxx devices in a
PICBASIC PRO program.   The supplied variable will be incremented at
each GOSUB and decremented at each RETURN.  This variable should be
set to 0 at the beginning of the program.

Adding this variable to a program does add overhead in that the value of
the variable must be incremented and decremented at each GOSUB and
RETURN.



PICBASIC PRO Compiler

107

5.48.  ON INTERRUPT

ON INTERRUPT GOTO Label

ON INTERRUPT allows the handling of microcontroller interrupts by a
PICBASIC PRO subroutine.

There are 2 ways to handle interrupts using the PICBASIC PRO
Compiler.  The first is to write an assembly language interrupt routine. 
This is the way to handle interrupts with the shortest latency and lowest
overhead, but must contain only assembly language, not BASIC, code. 
This method is discussed under advanced topics in a later section.

The second method is to write a PICBASIC PRO interrupt handler.  This
looks just like a PICBASIC PRO subroutine but ends with a RESUME
instead of a RETURN.

When an interrupt occurs, it is flagged.  As soon as the current
PICBASIC PRO statement’s execution is complete, the program jumps to
the BASIC interrupt handler at Label.  Once the interrupt handler is
complete, a RESUME statement sends the program back to where it was
when the interrupt occurred, picking up where it left off.

DISABLE and ENABLE allow different sections of a PICBASIC PRO
program to execute without the possibility of being interrupted.  The most
notable place to use DISABLE is right before the actual interrupt handler. 
Or the interrupt handler may be placed before the ON INTERRUPT
statement as the interrupt flag is not checked before the first ON
INTERRUPT in a program.

Latency is the time it takes from the time of the actual interrupt to the
time the interrupt handler is entered.  Since PICBASIC PRO statements
are not re-entrant (i.e. you cannot execute another PICBASIC PRO
statement while one is being executed), there can be considerable
latency before the interrupt routine is entered.

PBP will not enter the BASIC interrupt handler until it has finished
executing the current statement.  If the statement is a PAUSE or SERIN, it
could be quite a while before the interrupt is acknowledged.  The
program must be designed with this latency in mind.  If it is unacceptable
and the interrupts must be handled more quickly, an assembly language
interrupt routine must be used.



PICBASIC PRO Compiler

108

Overhead is another issue.  ON INTERRUPT will add instructions before
every statement to check whether or not an interrupt has occurred. 
DISABLE turns off the addition of these instructions.  ENABLE turns it
back on again.  Usually the additional instructions will not be much of a
problem, but long programs in small microcontrollers could suffer.

More than one ON INTERRUPT may be used in a program.

ON INTERRUPT GOTO myint ‘ Interrupt handler is
myint

INTCON = %10010000 ‘ Enable RB0 interrupt

. . .

DISABLE ‘ Disable interrupts in
handler

myint: led = 1 ‘ Turn on LED when interrupted
INTCON.1 = 0 ‘ Clear interrupt flag
RESUME ‘ Return to main program
ENABLE ‘ Enable interrupts after

handler

To turn off interrupts permanently (or until needed again) once ON
INTERRUPT has been used, set INTCON to $80:

INTCON = $80



PICBASIC PRO Compiler

109

5.49.  OUTPUT

OUTPUT Pin

Make the specified Pin an output.  Pin may be a constant, 0 - 15, or a
variable that contains a number 0 - 15 (e.g. B0) or a pin name (e.g.
PORTA.0).

OUTPUT 0 ‘ Make Pin0 an output
OUTPUT PORTA.0 ‘ Make PORTA, pin 0 an output

Alternatively, the pin may be set to an output in a much quicker and
shorter way (from a generated code standpoint):

TRISB.0 = 0 ‘ Set PORTB, pin 0 to an
output

All of the pins on a port may be set to outputs by setting the entire TRIS
register at once:

TRISB = %00000000 ‘ Set all of PORTB to outputs



PICBASIC PRO Compiler

110

5.50.  OWIN

OWIN Pin,Mode,[Item...]

Optionally send a reset pulse to a one-wire device and then read one or
more bits or bytes of data from it, optionally ending with another reset
pulse.

Pin may be a constant, 0 - 15, or a variable that contains a number 0 -
15 (e.g. B0) or a pin name (e.g. PORTA.0).

Mode specifies whether a reset is sent before and/or after the operation
and the size of the data items, either bit or byte.

Mode bit number Effect

0 1 = send reset pulse before data

1 1 = send reset pulse after data

2 0 = byte-sized data, 1 = bit-sized data

Some Mode examples would be: Mode of %000 (decimal 0) means no
reset and byte-sized data, Mode of %001 (decimal 1) means reset before
data and byte-sized data, Mode of %100 (decimal 4) means no reset and
bit-sized data.

Item is one or more variables or modifiers separated by commas.  The
allowable modifiers are STR for reading data into a byte array variable
and SKIP for skipping a number of input values.

The SKIP and STR modifiers are not supported for the 12-bit core PIC
MCUs because of RAM and stack size limits.

OWIN PORTC.0,%000,[STR temperature\2,SKIP 4,
count_remain, count_per_c]

This statement would receive bytes from a one-wire device on PORTC
pin 0 with no reset pulse being sent.  It would receive 2 bytes and put
them into the byte array temperature, skip the next 4 bytes and then read
the final 2 bytes into separate variables.



PICBASIC PRO Compiler

111

5.51.  OWOUT

OWOUT Pin,Mode,[Item...]

Optionally send a reset pulse to a one-wire device and then writes one or
more bits or bytes of data to it, optionally ending with another reset pulse.

Pin may be a constant, 0 - 15, or a variable that contains a number 0 -
15 (e.g. B0) or a pin name (e.g. PORTA.0).

Mode specifies whether a reset is sent before and/or after the operation
and the size of the data items, either bit or byte.

Mode bit number Effect

0 1 = send reset pulse before data

1 1 = send reset pulse after data

2 0 = byte-sized data, 1 = bit-sized data

Some Mode examples would be: Mode of %000 (decimal 0) means no
reset and byte-sized data, Mode of %001 (decimal 1) means reset before
data and byte-sized data, Mode of %100 (decimal 4) means no reset and
bit-sized data.

Item is one or more constants, variables or modifiers separated by
commas.  The allowable modifiers are STR for sending data from a byte
array variable and REP for sending a number of repeated values.

The REP and STR modifiers are not supported for the 12-bit core PIC
MCUs because of RAM and stack size limits.

OWOUT PORTC.0,%001,[$cc,$be]

This statement would send a reset pulse to a one-wire device on PORTC
pin 0 followed by the bytes $cc and $be.



PICBASIC PRO Compiler

112

5.52.  PAUSE

PAUSE Period

Pause the program for Period milliseconds.  Period is 16-bits using
PBP and PBPW, so delays can be up to 65,535 milliseconds (a little over
a minute).  Using PBPL, Period is 32-bits.  This will allow delays of over
49 days.  Long values are interpreted as unsigned.  This may result in a
longer pause than expected.  If a long variable is used and it could go
negative, it should be limited to greater than or equal to 0 using a function
like MAX, for example.

Unlike the other delay functions (NAP and SLEEP), PAUSE doesn't put the
microcontroller into low power mode.  Thus, PAUSE consumes more
power but is also much more accurate.  It has the same accuracy as the
system clock.

PAUSE assumes an oscillator frequency of 4MHz.  If an oscillator other
that 4MHz is used, PBP must be told using a DEFINE OSC command. 
See the section on speed for more information.

PAUSE 1000 ‘ Delay for 1 second



PICBASIC PRO Compiler

113

5.53.  PAUSEUS

PAUSEUS Period

Pause the program for Period microseconds.  Period is 16-bits, so
delays can be up to 65,535 microseconds.  Unlike the other delay
functions (NAP and SLEEP), PAUSEUS doesn't put the microcontroller into
low power mode.  Thus, PAUSEUS consumes more power but is also
much more accurate.

Because PAUSEUS takes a minimum number of cycles to operate,
depending on the frequency of the oscillator, delays of less than a
minimum number of microseconds are not possible using PAUSEUS.  To
obtain shorter delays, use an assembly language routine.

OSC Minimum delay Minimum delay PIC18Xxxxx

3 (3.58) 20us 20us**

4 24us 19us**

8 12us 9us**

10 8us 7us**

12 7us 5us**

16 5us 4us**

20 3us 3us**

24 3us 2us**

25,32,33 2us* 2us**

40,48,64 - 1us**

* PIC17Cxxx only.
** PIC18Xxxxx only.

PAUSEUS assumes an oscillator frequency of 4MHz.  If an oscillator other
that 4MHz is used, PBP must be told using a DEFINE OSC command. 
See the section on speed for more information.

PAUSEUS 1000 ‘ Delay for 1 millisecond



PICBASIC PRO Compiler

114

5.54.  PEEK

PEEK Address,Var

Read the microcontroller register at the specified Address and stores
the result in Var. Special PIC MCU features such as A/D converters and
additional I/O ports may be read using PEEK.

If Address is a constant, the contents of this register number are placed
into Var.  If Address is the name of a special function register, e.g.
PORTA, the contents of this register will be placed into Var.  If Address
is a RAM location, the value of the RAM location will first be read, then
the contents of the register specified by that value will be placed into Var.

However, all of the PIC MCU registers can be and should be accessed
without using PEEK and POKE.  All of the PIC MCU registers are
considered 8-bit variables by PICBASIC PRO and may be used as you
would any other byte-sized variable.  They can be read directly or used
directly in equations.

B0 = PORTA ‘ Get current PORTA pin states
to B0



PICBASIC PRO Compiler

115

5.55.  PEEKCODE

PEEKCODE Address,Var

Read a value from the code space at the specified Address and store
the result in Var.

PEEKCODE can be used to read data stored in the code space of a PIC
MCU.  It executes a call to the specified Address and places the
returned value in Var.  The specified location should contain a retlw
and the data value.  POKECODE may be used to store this value at the
time the device is programmed.

PEEKCODE $3ff, OSCCAL ‘ Get OSCCAL value for
PIC12C671/12CE673

PEEKCODE $7ff, OSCCAL ‘ Get OSCCAL value for
PIC12C672/12CE674



PICBASIC PRO Compiler

116

5.56.  POKE

POKE Address,Value

Write Value  to the microcontroller register at the specified Address.
Special PIC MCU features such as A/D converters and additional I/O
ports may be written using POKE.

If Address is a constant, Value is placed into this register number.  If
Address is the name of a special function register, e.g. PORTA, Value
will be placed into this register.  If Address is a RAM location, the
contents of the RAM location will first be read, then Value is placed into
the register specified by those contents.

However, all of the PIC MCU registers can be and should be accessed
without using PEEK and POKE.  All of the PIC MCU registers are
considered 8-bit variables by PICBASIC PRO and may be used as you
would any other byte-sized variable.  They can be written directly or used
directly in equations.

TRISA = 0 ‘ Set PORTA to all outputs
PORTA.0 = 1 ‘ Set PORTA bit 0 high



PICBASIC PRO Compiler

117

5.57.  POKECODE

POKECODE {@Address,}Value{,Value...}

Store Values to the code space at the current program address or
optional specified Address at the time the microcontroller is
programmed.

POKECODE can be used to generate tables in the code space of the PIC
MCU.  It generates a return with the data in W.  This data can be
accessed using the PEEKCODE instruction.

If the optional Address  is not specified, data storage will be located
immediately after the preceding program instruction written.

To avoid interruption of program flow, POKECODE should be the last line
of your program.  It should be place after the END or STOP command.

POKECODE 10, 20, 30 ‘ Store 10, 20, and 30
in code space

Generates:
retlw 10
retlw 20
retlw 30

POKECODE @$7ff, $94 ‘ Set OSCCAL value for
PIC12C672/12CE674

Generates:
org 7ffh
retlw 94h



PICBASIC PRO Compiler

118

5.58.  POT

POT Pin,Scale,Var

Reads a potentiometer (or some other resistive device) on Pin.  Pin
may be a constant, 0 - 15, or a variable that contains a number 0 - 15
(e.g. B0) or a pin name (e.g. PORTA.0).

The resistance is measured by timing the discharge of a capacitor
through the resistor (typically 5K to 50K).  Scale is used to adjust for
varying RC constants.  For larger RC constants, Scale should be set low
(a minimum value of one).  For smaller RC constants, Scale should be
set to its maximum value (255).  If Scale is set correctly, Var should be
zero near minimum resistance and 255 near maximum resistance.

Unfortunately, Scale must be determined experimentally.  To do so, set
the device under measure to maximum resistance and read it with Scale
set to 127.  Adjust Scale until the Pot command returns 254.  If 255,
decrease the scale.  If 253 or lower, increase the scale.  (Note: This is
similar to the process performed by the Alt-P option of the BS1
environment).

Use the following code to automate the process.  Make sure that you set
the pot to maximum resistance.

B0 Var Byte
scale Var Byte

For scale = 1 To 255
POT 0,scale,B0
If (B0 > 253) Then calibrated

Next scale

Serout 2,0,["Increase R or C.",10,13]
Stop

calibrated:
Serout 2,0,["Scale= ",#scale,10,13]



PICBASIC PRO Compiler

119

Potentiometer wiring example:

0.1uF

5-50KPin



PICBASIC PRO Compiler

120

5.59.  PULSIN

PULSIN Pin,State,Var

Measures pulse width on Pin.  If State is zero, the width of a low pulse
is measured.  If State is one, the width of a high pulse is measured. 
The measured width is placed in Var.  If the pulse edge never happens
or the width of the pulse is too great to measure, Var is set to zero.

Pin is automatically made an input.  Pin may be a constant, 0 - 15, or a
variable that contains a number 0 - 15 (e.g. B0) or a pin name (e.g.
PORTA.0).

The resolution of PULSIN is dependent upon the oscillator frequency.  If
a 4MHz oscillator is used, the pulse width is returned in 10us increments. 
If a 20MHz oscillator is used, the pulse width will have a 2us resolution. 
Defining an OSC value has no effect on PULSIN.  The resolution always
changes with the actual oscillator speed.

PULSIN normally waits a maximum of 65535 counts before it determines
there is no pulse.  If it is desired to wait fewer or more counts before it
stops looking for a pulse or the end of a pulse, a DEFINE can be added:

DEFINE PULSIN_MAX 1000

This DEFINE also affects RCTIME in the same manner.

‘ Measure high pulse on Pin4 stored in W3
PULSIN PORTB.4,1,W3



PICBASIC PRO Compiler

121

5.60.  PULSOUT

PULSOUT Pin,Period

Generates a pulse on Pin of specified Period.  The pulse is generated
by toggling the pin twice, thus the initial state of the pin determines the
polarity of the pulse.  Pin is automatically made an output.  Pin may be
a constant, 0 - 15, or a variable that contains a number 0 - 15 (e.g. B0) or
a pin name (e.g. PORTA.0).

The resolution of PULSOUT is dependent upon the oscillator frequency.  If
a 4MHz oscillator is used, the Period of the generated pulse will be in
10us increments.  If a 20MHz oscillator is used, Period will have a 2us
resolution.  Defining an OSC value has no effect on PULSOUT.  The
resolution always changes with the actual oscillator speed.

‘ Send a pulse 1mSec long (at 4MHz) to Pin5
PULSOUT PORTB.5,100



PICBASIC PRO Compiler

122

5.61.  PWM

PWM Pin,Duty,Cycle

Outputs a pulse width modulated pulse train on Pin.  Each cycle of PWM
consists of 256 steps.  The Duty cycle for each PWM cycle ranges from
0 (0%) to 255 (100%).  This PWM cycle is repeated Cycle times.  Pin
may be a constant, 0 - 15, or a variable that contains a number 0 - 15
(e.g. B0) or a pin name (e.g. PORTA.0).

The Cycle time of PWM is dependent upon the oscillator frequency.  If a
4MHz oscillator is used, each Cycle is about 5ms long.  If a 20MHz
oscillator is used, each Cycle is about 1ms in length.  Defining an OSC
value has no effect on PWM.  The Cycle time always changes with the
actual oscillator speed.

If you want continuous PWM output and the PIC MCU has PWM
hardware, HPWM may be used instead of PWM.  See the section on for
HPWM more information about it.

Pin is made an output just prior to pulse generation and reverts to an
input after generation stops.  The PWM output on a pin looks like so much
garbage, not a beautiful series of square waves.  A filter of some sort is
necessary to turn the signal into something useful.  An RC circuit can be
used as a simple D/A converter:

10K

1uF

Pin Analog Out

PWM PORTB.7,127,100 ‘ Send a 50% duty cycle
PWM signal out Pin7 for
100 cycles



PICBASIC PRO Compiler

123

5.62.  RANDOM

RANDOM Var

Perform one iteration of pseudo-randomization on Var.  Var should be a
16-bit variable.  Array variables with a variable index may not be used in
RANDOM although array variables with a constant index are allowed.  Var
is used both as the seed and to store the result.  The pseudo-random
algorithm used has a walking length of 65535 (only zero is not produced).

RANDOM W4 ‘ Randomize value in W4



PICBASIC PRO Compiler

124

5.63.  RCTIME

RCTIME Pin,State,Var

RCTIME measures the time a Pin stays in a particular State.  It is
basically half a PULSIN.  Pin is automatically made an input.  Pin may
be a constant, 0 - 15, or a variable that contains a number 0 - 15 (e.g.
B0) or a pin name (e.g. PORTA.0).

RCTIME may be used to read a potentiometer (or some other resistive
device).  Resistance can be measured by discharging and timing the
charge (or vice versa) of a capacitor through the resistor (typically 5K to
50K).

The resolution of RCTIME is dependent upon the oscillator frequency.  If
a 4MHz oscillator is used, the time in state is returned in 10us
increments.  If a 20MHz oscillator is used, the time in state will have a
2us resolution.  Defining an OSC value has no effect on RCTIME.  The
resolution always changes with the actual oscillator speed.

If the pin never changes state, 0 is returned.  RCTIME normally waits a
maximum of 65535 counts before it determines there is no change of
state.  If it is desired to wait fewer or more counts before it stops looking
for this change, a DEFINE can be added:

DEFINE PULSIN_MAX 1000

This DEFINE also affects PULSIN in the same manner.

Low PORTB.3 ‘ Discharge cap to start
Pause 10 ‘ Discharge for 10ms
RCTIME PORTB.3,0,W0 ‘ Read potentiometer on

Pin3



PICBASIC PRO Compiler

125

5.64.  READ

READ Address,Var

Read a byte from the on-chip EEPROM at the specified Address and
stores the result in Var.  This instruction may only be used with a PIC
MCU that has an on-chip EEPROM data area such as the PIC12F683,
16F84 and the 16F87x series.

READ will not work on devices with on-chip I2C interfaced serial EEPROM
like the PIC12CE67x and 16CE62x parts.  Use the I2CREAD instruction
instead.

READ 5,B2 ‘ Put the value at EEPROM location 5
into B2

To read a word, each of the 2 bytes that make up the word must be read
separately:

w Var Word
READ 0,w.Byte0
READ 1,w.Byte1



PICBASIC PRO Compiler

126

5.65.  READCODE

READCODE Address,Var

Read the code at location Address into Var.

Some PIC16Fxxx and PIC18Xxxxx devices allow program code to be
read at run-time.  This may be useful for additional data storage or to
verify the validity of the program code.

For PIC16Fxxx devices, 14-bit-sized data can be read from word code
space Addresses.

For PIC18Xxxxx devices, byte or word-sized data can be read from byte
(rather than word) code space Addresses.

The listing file may be examined to determine program addresses.

READCODE $100,w ‘ Put the code word at
location $100 into W



PICBASIC PRO Compiler

127

5.66.  REPEAT..UNTIL

REPEAT
Statement...

UNTIL Condition

REPEATedly execute Statements UNTIL the specified Condition is
true.  When the Condition is true, execution continues at the statement
following the UNTIL.  Condition may be any comparison expression.

i = 0
REPEAT

PORTB.0[i] = 0
i = i + 1

UNTIL i > 7



PICBASIC PRO Compiler

128

5.67.  RESUME

RESUME {Label}

Pick up where program left off after handling an interrupt.  RESUME is
similar to RETURN but is used at the end of a PICBASIC PRO interrupt
handler.

If the optional Label is used, program execution will continue at the
Label instead of where it was when it was interrupted.  In this case, any
other return addresses on the stack will no longer be accessible.

See ON INTERRUPT for more information.

clockint: seconds = seconds + 1 ‘ Count time
RESUME ‘ Return to program after

interrupt

error: High errorled ‘ Turn on error LED
RESUME restart ‘ Resume somewhere else



PICBASIC PRO Compiler

129

5.68.  RETURN

RETURN

Return from subroutine.  RETURN resumes execution at the statement
following the GOSUB which called the subroutine.

Gosub sub1 ‘ Go to subroutine labeled sub1
...

sub1: Serout 0,N2400,[“Lunch”] ‘ Send “Lunch” out
Pin0 serially

RETURN ‘ Return to main program after Gosub



PICBASIC PRO Compiler

130

5.69.  REVERSE

REVERSE Pin

If Pin is an input, it is made an output.  If Pin is an output, it is made an
input.  Pin may be a constant, 0 - 15, or a variable that contains a
number 0 - 15 (e.g. B0) or a pin name (e.g. PORTA.0).

Output 4 ‘ Make Pin4 an output
REVERSE 4 ‘ Change Pin4 to an input



PICBASIC PRO Compiler

131

5.70.  SELECT CASE

SELECT CASE Var
CASE Expr1 {, Expr...}

Statement...

CASE Expr2 {, Expr...}
Statement...

{CASE ELSE
Statement...}

END SELECT

CASE statements are sometimes easier to use than multiple IF..THENs. 
These statements are used to compare a variable with different values or
ranges of values, and take action based on the value.

The Variable to be used in all of the comparisons is specified in the
SELECT CASE statement.  Each CASE is followed by the Statements to
be executed if the CASE is true.  IS may be used to specify a comparison
other than equal to.  If none of the CASEs are true, the Statements
under the optional CASE ELSE statement are executed.  An END
SELECT closes the SELECT CASE.

SELECT CASE x
CASE 1

y = 10
CASE 2, 3

y = 20
CASE IS > 5

y = 100
CASE ELSE

y = 0
END SELECT



PICBASIC PRO Compiler

132

5.71.  SERIN

SERIN
Pin,Mode,{Timeout,Label,}{[Qual...],}{Item...}

Receive one or more Items on Pin in standard asynchronous format
using 8 data bits, no parity and one stop bit (8N1).  SERIN is similar to
the BS1 Serin command with the addition of a Timeout.  Pin is
automatically made an input.  Pin may be a constant, 0 - 15, or a
variable that contains a number 0 - 15 (e.g. B0) or a pin name (e.g.
PORTA.0).

The Mode names (e.g. T2400) are defined in the file MODEDEFS.BAS. 
To use them, add the line:

Include “modedefs.bas”

to the top of the PICBASIC PRO program.  BS1DEFS.BAS and
BS2DEFS.BAS already includes MODEDEFS.BAS.  Do not include it again
if one of these files is already included.  The Mode numbers may be used
without including this file.

Mode Mode No. Baud Rate State

T2400 0 2400

True
T1200 1 1200

T9600 2 9600

T300 3 300

N2400 4 2400

Inverted
N1200 5 1200

N9600 6 9600

N300 7 300

An optional Timeout and Label may be included to allow the program
to continue if a character is not received within a certain amount of time. 
Timeout is specified in 1 millisecond units.  If the serial input pin stays in
the idle state during the Timeout time, the program will exit the SERIN
command and jump to Label.



PICBASIC PRO Compiler

133

The list of data items to be received may be preceded by one or more
qualifiers enclosed within brackets.  SERIN must receive these bytes in
exact order before receiving the data items.  If any byte received does not
match the next byte in the qualifier sequence, the qualification process
starts over (i.e. the next received byte is compared to the first item in the
qualifier list).  A Qualifier can be a constant, variable or a string
constant.  Each character of a string is treated as an individual qualifier.

Once the qualifiers are satisfied, SERIN begins storing data in the
variables associated with each Item.  If the variable name is used alone,
the value of the received ASCII character is stored in the variable.  If
variable is preceded by a pound sign ( # ), SERIN converts a decimal
value in ASCII and stores the result in that variable.  All non-digits
received prior to the first digit of the decimal value are ignored and
discarded.  The non-digit character which terminates the decimal value is
also discarded.  The decimal value received may not be greater than
65535, even when a long variable is specified.

SERIN assumes a 4MHz oscillator when generating its bit timing.  To
maintain the proper baud rate timing with other oscillator values, be sure
to DEFINE the OSC setting to the new oscillator value.

While single-chip RS-232 level converters are common and inexpensive,
the excellent I/O specifications of the PIC MCU allow most applications to
run without level converters.  Rather, inverted input (N300..N9600) can
be used is conjunction with a current limiting resistor.

22K
Pin RS-232 TX

RS-232 GND

Pin 3

Pin 5 Pin 7

Pin 2

DB9 DB25

‘ Wait until the character “A” is received
serially on Pin1 and put next character into B0
SERIN 1,N2400,[“A”],B0



PICBASIC PRO Compiler

134

5.72.  SERIN2

SERIN2 DataPin{\FlowPin},Mode,{ParityLabel,}
{Timeout,Label,}[Item...]

Receive one or more Items on Pin in standard asynchronous format. 
SERIN2 is similar to the BS2 Serin command.  DataPin is automatically
made an input. The optional FlowPin is automatically made an output. 
DataPin and FlowPin may be a constant, 0 - 15, or a variable that
contains a number 0 - 15 (e.g. B0) or a pin name (e.g. PORTA.0).

The optional flow control pin, FlowPin, may be included to help keep
data from overrunning the receiver.  If it is used, FlowPin is
automatically set to the enabled state to allow transmission of each
character.  This enabled state is determined by the polarity of the data
specified by Mode.

Mode is used to specify the baud rate and operating parameters of the
serial transfer.  The low order 13 bits select the baud rate.  Bit 13 selects
parity or no parity.  Bit 14 selects inverted or true level.  Bit 15 is not used.

The baud rate bits specify the bit time in microseconds - 20.  To find the
value for a given baud rate, use the equation:

(1000000 / baud) - 20

Some standard baud rates are listed in the following table.

Baud Rate Bits 0 - 12

300 3313

600 1646

1200 813

2400 396

4800 188

9600* 84

19200* 32

38400* 6

*Oscillator faster than 4MHz may be required.



PICBASIC PRO Compiler

135

Bit 13 selects parity (bit 13 = 1) or no parity (bit 13 = 0).  Normally, the
serial transmissions are 8N1 (8 data bits, no parity and 1 stop bit).  If
parity is selected, the data is received as 7E1 (7 data bits, even parity
and 1 stop bit).  To receive odd parity instead of even parity, include the
following DEFINE in the program:

DEFINE SER2_ODD 1

Bit 14 selects the level of the data and flow control pins.  If bit 14 = 0, the
data is received in true form for use with RS-232 drivers.  If bit14 = 1, the
data is received inverted.  This mode can be used to avoid installing RS-
232 drivers.

Some examples of Mode are: Mode = 84 (9600 baud, no parity, true),
Mode = 16780 (2400 baud, no parity, inverted), Mode = 27889 (300 baud,
even parity, inverted).  Appendix A shows more Mode examples.

If ParityLabel is included, this label will be jumped to if a character
with bad parity is received.  It should only be used if parity is selected (bit
13 = 1).

An optional Timeout and Label may be included to allow the program
to continue if a character is not received within a certain amount of time. 
Timeout is specified in 1 millisecond units.  If the serial input pin stays in
the idle state during the Timeout time, the program will exit the SERIN2
command and jump to Label.

A DEFINE allows the use of data bits other than 8 (or 7 with parity). 
SER2_BITS data bits may range from 4 bits to 8 (the default if no
DEFINE is specified). Enabling parity uses one of the number of bits
specified.

Defining SER2_BITS to 9 allows 8 bits to be read and written along with a
9th parity bit.

With parity disabled (the default):

DEFINE SER2_BITS 4 ' Set Serin2 and Serout2
data bits to 4

DEFINE SER2_BITS 5 ' Set Serin2 and Serout2
data bits to 5

DEFINE SER2_BITS 6 ' Set Serin2 and Serout2
data bits to 6



PICBASIC PRO Compiler

136

DEFINE SER2_BITS 7 ' Set Serin2 and Serout2
data bits to 7

DEFINE SER2_BITS 8 ' Set Serin2 and Serout2
data bits to 8 (default)

With parity enabled:

DEFINE SER2_BITS 5 ' Set Serin2 and Serout2
data bits to 4

DEFINE SER2_BITS 6 ' Set Serin2 and Serout2
data bits to 5

DEFINE SER2_BITS 7 ' Set Serin2 and Serout2
data bits to 6

DEFINE SER2_BITS 8 ' Set Serin2 and Serout2
data bits to 7 (default)

DEFINE SER2_BITS 9 ' Set Serin2 and Serout2
data bits to 8

SERIN2 supports many different data modifiers which may be mixed and
matched freely within a single SERIN2 statement to provide various input
formatting.

Modifier Operation

BIN{1..32} Receive binary digits

DEC{1..10} Receive decimal digits

HEX{1..8} Receive upper case hexadecimal digits

SKIP n Skip n received characters

STR ArrayVar\n{\c} Receive string of n characters
optionally ended in character c

WAIT ( ) Wait for sequence of characters

WAITSTR ArrayVar{\n} Wait for character string

1) A variable preceded by BIN will receive the ASCII representation
of its binary value.  For example, if BIN B0 is specified and
“1000" is received, B0 will be set to 8.

2) A variable preceded by DEC will receive the ASCII representation
of its decimal value.  For example, if DEC B0 is specified and
“123" is received, B0 will be set to 123.



PICBASIC PRO Compiler

137

3) A variable preceded by HEX will receive the ASCII representation
of its hexadecimal value.  For example, if HEX B0 is specified
and “FE" is received, B0 will be set to 254.

4) SKIP followed by a count will skip that many characters in the
input stream.  For example, SKIP 4 will skip 4 characters..

5) STR followed by a byte array variable, count and optional ending
character will receive a string of characters.  The string length is
determined by the count or when the optional character is
encountered in the input.

6) The list of data items to be received may be preceded by one or
more qualifiers between parenthesis after WAIT.  SERIN2 must
receive these bytes in exact order before receiving the data
items.  If any byte received does not match the next byte in the
qualifier sequence, the qualification process starts over (i.e. the
next received byte is compared to the first item in the qualifier
list).  A Qualifier can be a constant, variable or a string
constant.  Each character of a string is treated as an individual
qualifier.

7) WAITSTR can be used as WAIT above to force SERIN2 to wait
for a string of characters of an optional length before proceeding.

Once any WAIT or WAITSTR qualifiers are satisfied, SERIN2 begins
storing data in the variables associated with each Item.  If the variable
name is used alone, the value of the received ASCII character is stored
in the variable.  If variable is preceded by BIN, DEC or HEX, then SERIN2
converts a binary, decimal or hexadecimal value in ASCII and stores the
result in that variable.  All non-digits received prior to the first digit of the
decimal value are ignored and discarded.  The non-digit character which
terminates the value is also discarded.

BIN, DEC and HEX may be followed by a number.  Normally, these
modifiers receive as many digits as are in the input.  However, if a
number follows the modifier, SERIN2 will always receive that number of
digits, skipping additional digits as necessary.

SERIN2 assumes a 4MHz oscillator when generating its bit timing.  To
maintain the proper baud rate timing with other oscillator values, be sure
to DEFINE the OSC setting to the new oscillator value.  An oscillator
speed faster than 4MHz may be required for reliable operation at 9600
baud and above.



PICBASIC PRO Compiler

138

While single-chip RS-232 level converters are common and inexpensive,
thanks to current RS-232 implementation and the excellent I/O
specifications of the PIC MCU, most applications don't require level
converters.  Rather, inverted TTL (Mode bit 14 = 1) can be used.  A
current limiting resistor is suggested (RS-232 is suppose to be
short-tolerant).

22K
Pin RS-232 TX

RS-232 GND

Pin 3

Pin 5 Pin 7

Pin 2

DB9 DB25

SERIN2 is not supported on 12-bit core PIC MCUs due to RAM and stack
constraints.

‘ Wait until the character “A” is received
serially on Pin1 and put next character into B0
SERIN2 1,16780,[WAIT(“A”),B0]

‘ Skip 2 chars and grab a 4 digit decimal number
SERIN2 PORTA.1,84,[SKIP 2,DEC4 B0]

SERIN2 PORTA.1\PORTA.0,84,100,tlabel,[WAIT(“x”,
b0),STR ar]



PICBASIC PRO Compiler

139

5.73.  SEROUT

SEROUT Pin,Mode,[Item{,Item...}]

Sends one or more items to Pin in standard asynchronous format using
8 data bits, no parity and one stop (8N1).  SEROUT is similar to the BS1
Serout command.  Pin is automatically made an output.  Pin may be a
constant, 0 - 15, or a variable that contains a number 0 - 15 (e.g. B0) or a
pin name (e.g. PORTA.0).

The Mode names (e.g. T2400) are defined in the file MODEDEFS.BAS. 
To use them, add the line:

Include “modedefs.bas”

to the top of the PICBASIC PRO program.  BS1DEFS.BAS and
BS2DEFS.BAS already includes MODEDEFS.BAS.  Do not include it again
if one of these files is already included.  The Mode numbers may be used
without including this file.



PICBASIC PRO Compiler

140

Mode Mode No. Baud Rate State

T2400 0 2400

Driven True
T1200 1 1200

T9600 2 9600

T300 3 300

N2400 4 2400

Driven Inverted
N1200 5 1200

N9600 6 9600

N300 7 300

OT2400 8 2400

Open True*
OT1200 9 1200

OT9600 10 9600

OT300 11 300

ON2400 12 2400

Open Inverted*
ON1200 13 1200

ON9600 14 9600

ON300 15 300

* Open modes not supported on 12-bit core PIC MCUs.

SEROUT supports three different data types which may be mixed and
matched freely within a single SEROUT statement.

1) A string constant is output as a literal string of characters.
2) A numeric value (either a variable or a constant) will send the

corresponding ASCII character. Most notably, 13 is carriage
return and 10 is line feed.

3) A numeric value preceded by a pound sign ( # ) will send the
ASCII representation of its decimal value, up to 65535.  For
example, if W0 = 123, then #W0 (or #123) will send “1", “2", ”3".

SEROUT assumes a 4MHz oscillator when generating its bit timing.  To
maintain the proper baud rate timing with other oscillator values, be sure
to DEFINE the OSC setting to the new oscillator value.

In some cases, the transmission rates of SEROUT instructions may
present characters too quickly to the receiving device.  A DEFINE adds



PICBASIC PRO Compiler

141

character pacing to the serial output transmissions.  This allows
additional time between the characters as they are transmitted.  The
character pacing DEFINE allows a delay of 1 to 65,535 microseconds
(.001 to 65.535 milliseconds) between each character transmitted.

For example, to pause 1 millisecond between the transmission of each
character:

DEFINE CHAR_PACING 1000

While single-chip RS-232 level converters are common and inexpensive,
thanks to current RS-232 implementation and the excellent I/O
specifications of the PIC MCU, most applications don't require level
converters.  Rather, inverted TTL (N300..N9600) can be used.  A current
limiting resistor is suggested (RS-232 is suppose to be short-tolerant).

1K
Pin RS-232 RX

RS-232 GND

Pin 2

Pin 5 Pin 7

Pin 3

DB9 DB25

SEROUT 0,N2400,[#B0,10] ‘ Send the ASCII value
of B0 followed by a
linefeed out Pin0
serially



PICBASIC PRO Compiler

142

5.74.  SEROUT2

SEROUT2 DataPin{\FlowPin},Mode,{Pace,}
{Timeout,Label,}[Item...]

Send one or more Items to DataPin in standard asynchronous format. 
SEROUT2 is similar to the BS2 Serout command.  DataPin is
automatically made an output. The optional FlowPin is automatically
made an input.  DataPin and FlowPin may be a constant, 0 - 15, or a
variable that contains a number 0 - 15 (e.g. B0) or a pin name (e.g.
PORTA.0).

The optional flow control pin, FlowPin, may be included to help keep
data from overrunning the receiver.  If it is used, the serial data will not be
sent until FlowPin is in the proper state.  This state is determined by the
polarity of the data specified by Mode.

An optional Timeout and Label may be included to allow the program
to continue if the FlowPin does not change to the enabled state within a
certain amount of time.  Timeout is specified in units of 1 millisecond.
If FlowPin stays disabled during the Timeout time, the program will exit
the SEROUT2 command and jump to Label.

In some cases, the transmission rates of SEROUT2 instructions may
present characters too quickly to the receiving device.  It may not be
desirable to use an extra pin for flow control.  An optional Pace can be
used to add character pacing to the serial output transmissions.  This
allows additional time between the characters as they are transmitted. 
The character pacing allows a delay of 1 to 65,535 milliseconds between
each character transmitted.

Mode is used to specify the baud rate and operating parameters of the
serial transfer.  The low order 13 bits select the baud rate.  Bit 13 selects
parity or no parity.  Bit 14 selects inverted or true level.  Bit 15 selects
whether it is driven or open.

The baud rate bits specify the bit time in microseconds - 20.  To find the
value for a given baud rate, use the equation:

(1000000 / baud) - 20

Some standard baud rates are listed in the following table.



PICBASIC PRO Compiler

143

Baud Rate Bits 0 - 12

300 3313

600 1646

1200 813

2400 396

4800 188

9600* 84

19200* 32

38400* 6

*Oscillator faster than 4MHz may be required.

Bit 13 selects parity (bit 13 = 1) or no parity (bit 13 = 0).  Normally, the
serial transmissions are 8N1 (8 data bits, no parity and 1 stop bit).  If
parity is selected, the data is sent as 7E1 (7 data bits, even parity and 1
stop bit).  To transmit odd parity instead of even parity, include the
following DEFINE in the program:

DEFINE SER2_ODD 1

Bit 14 selects the level of the data and flow control pins.  If bit 14 = 0, the
data is sent in true form for use with RS-232 drivers.  If bit14 = 1, the data
is sent inverted.  This mode can be used to avoid installing RS-232
drivers.

Bit 15 selects whether the data pin is always driven (bit 15 = 0), or is open
in one of the states (bit 15 = 1).  The open mode can be used to chain
several devices together on the same serial bus.

See Appendix A for a table of Mode examples.

A DEFINE allows the use of data bits other than 8 (or 7 with parity). 
SER2_BITS data bits may range from 4 bits to 8 (the default if no
DEFINE is specified). Enabling parity uses one of the number of bits
specified.  Defining SER2_BITS to 9 allows 8 bits to be read and written
along with a 9th parity bit.

With parity disabled (the default):



PICBASIC PRO Compiler

144

DEFINE SER2_BITS 4 ' Set Serin2 and Serout2
data bits to 4

DEFINE SER2_BITS 5 ' Set Serin2 and Serout2
data bits to 5

DEFINE SER2_BITS 6 ' Set Serin2 and Serout2
data bits to 6

DEFINE SER2_BITS 7 ' Set Serin2 and Serout2
data bits to 7

DEFINE SER2_BITS 8 ' Set Serin2 and Serout2
data bits to 8 (default)

With parity enabled:

DEFINE SER2_BITS 5 ' Set Serin2 and Serout2
data bits to 4

DEFINE SER2_BITS 6 ' Set Serin2 and Serout2
data bits to 5

DEFINE SER2_BITS 7 ' Set Serin2 and Serout2
data bits to 6

DEFINE SER2_BITS 8 ' Set Serin2 and Serout2
data bits to 7 (default)

DEFINE SER2_BITS 9 ' Set Serin2 and Serout2
data bits to 8

SEROUT2 supports many different data modifiers which may be mixed
and matched freely within a single SEROUT2 statement to provide various
output formatting.

Modifier Operation

{I}{S}BIN{1..32} Send binary digits

{I}{S}DEC{1..10} Send decimal digits

{I}{S}HEX{1..8} Send hexadecimal digits

REP c\n Send character c repeated n times

STR ArrayVar{\n} Send string of n characters

1) A string constant is output as a literal string of characters.
2) A numeric value (either a variable or a constant) will send the

corresponding ASCII character. Most notably, 13 is carriage
return and 10 is line feed.

3) A numeric value preceded by BIN will send the ASCII
representation of its binary value.  For example, if B0 = 8, then
BIN B0 (or BIN 8) will send “1000".



PICBASIC PRO Compiler

145

4) A numeric value preceded by DEC will send the ASCII
representation of its decimal value.  For example, if B0 = 123,
then DEC B0 (or DEC 123) will send “123".

5) A numeric value preceded by HEX will send the ASCII
representation of its hexadecimal value.  For example, if B0 =
254, then HEX B0 (or HEX 254) will send “FE”.

6) REP followed by a character and count will repeat the character,
count time.  For example, REP “0"\4 will send “0000".

7) STR followed by a byte array variable and optional count will send
a string of characters.  The string length is determined by the
count or when a 0 character is encountered in the string.

BIN, DEC and HEX may be preceded or followed by several optional
parameters.  If any of them are preceded by an I (for indicated), the
output will be preceded by either a “%”, “#” or “$” to indicate the following
value is binary, decimal or hexadecimal.

If any are preceded by an S (for signed), the output will be sent preceded
by a “-“ if the high order bit of the data is set.  This allows the
transmission of negative numbers.  Keep in mind that all of the math and
comparisons in PBP are unsigned.  However, unsigned math can yield
signed results.  For example, take the case of B0 = 9 - 10.   The
result of DEC B0 would be “255".  Sending SDEC B0 would give “-1"
since the high order bit is sent.  So with a little trickery, the unsigned math
of PBP can yield signed results.

BIN, DEC and HEX may also be followed by a number.  Normally, these
modifiers display exactly as many digits as are necessary, zero blanked
(leading zeros are not sent).  However, if a number follows the modifier,
SEROUT2 will always send that number of digits, adding leading zeros as
necessary.  It will also trim of any extra high order digits.  For example,
BIN6 8 would send “001000" and BIN2 8 would send “00".

Any or all of the modifier combinations may be used at once.  For
example, ISDEC4 B0.

SEROUT2 assumes a 4MHz oscillator when generating its bit timing.  To
maintain the proper baud rate timing with other oscillator values, be sure
to DEFINE the OSC setting to the new oscillator value.  An oscillator
speed faster than 4MHz may be required for reliable operation at 9600
baud and above.



PICBASIC PRO Compiler

146

While single-chip RS-232 level converters are common and inexpensive,
thanks to current RS-232 implementation and the excellent I/O
specifications of the PIC MCU, most applications don't require level
converters.  Rather, inverted TTL (Mode bit 14 = 1) can be used.  A
current limiting resistor is suggested (RS-232 is suppose to be
short-tolerant).

1K
Pin RS-232 RX

RS-232 GND

Pin 2

Pin 5 Pin 7

Pin 3

DB9 DB25

SEROUT2 is not supported on 12-bit core PIC MCUs due to RAM and
stack constraints.

‘ Send the ASCII value of B0 followed by a

linefeed out Pin0 serially at 2400 baud 
SEROUT2 0,16780,[DEC B0,10]

‘ Send “B0 =” followed by the binary value of B0

out PORTA pin 1 serially at 9600 baud 
SEROUT2 PORTA.1,84,[“B0=”, IHEX4 B0]



PICBASIC PRO Compiler

147

5.75.  SHIFTIN

SHIFTIN DataPin,ClockPin,Mode,[Var{\Bits}...]

Clock ClockPin, synchronously shift in bits on DataPin and store the
data received into Var.  ClockPin and DataPin may be a constant, 0-
15, or a variable that contains a number 0-15 (e.g. B0) or a pin name
(e.g. PORTA.0).

 \Bits optionally specifies the number of bits to be shifted in.  If it is not
specified, 8 bits are shifted in, independent of the variable type.  The
Bits shifted in are always the low order bits, regardless of the Mode
used, LSB or MSB.

The Mode names (e.g. MSBPRE) are defined in the file MODEDEFS.BAS. 
To use them, add the line:

Include “modedefs.bas”

to the top of the PICBASIC PRO program.  BS1DEFS.BAS and
BS2DEFS.BAS already includes MODEDEFS.BAS.  Do not include it again
if one of these files is already included.  The Mode numbers may be used
without including this file..  Some Modes do not have a name.

For  Modes 0-3, the clock idles low, toggles high to clock in a bit, and
then returns low.  For  Modes 4-7, the clock idles high, toggles low to
clock in a bit, and then returns high.



PICBASIC PRO Compiler

148

Mode Mode No. Operation

MSBPRE 0 Shift data in highest bit first,
Read data before sending clock. 
Clock idles low.

LSBPRE 1 Shift data in lowest bit first,
Read data before sending clock. 
Clock idles low.

MSBPOST 2 Shift data in highest bit first,
Read data after sending clock. 
Clock idles low.

LSBPOST 3 Shift data in lowest bit first,
Read data after sending clock. 
Clock idles low.

4 Shift data in highest bit first,
Read data before sending clock. 
Clock idles high.

5 Shift data in lowest bit first,
Read data before sending clock. 
Clock idles high.

6 Shift data in highest bit first,
Read data after sending clock. 
Clock idles high.

7 Shift data in lowest bit first,
Read data after sending clock. 
Clock idles high.

The shift clock runs at about 50kHz, dependent on the oscillator.  The
active state is held to a minimum of 2 microseconds.  A DEFINE allows
the active state of the clock to be extended by an additional number of
microseconds up to 65,535 (65.535 milliseconds) to slow the clock rate. 
The minimum additional delay is defined by the PAUSEUS timing.  See its
section for the minimum for any given oscillator.  This DEFINE is not
available on 12-bit core PIC MCUs.

For example, to slow the clock by an additional 100 microseconds:

DEFINE SHIFT_PAUSEUS 100



PICBASIC PRO Compiler

149

The following diagram shows the relationship of the clock to the data for
the various modes:

      

SHIFTIN 0,1,MSBPRE,[B0,B1\4]



PICBASIC PRO Compiler

150

5.76.  SHIFTOUT

SHIFTOUT DataPin,ClockPin,Mode,[Var{\Bits}...]

Synchronously shift out Var on ClockPin and DataPin.  ClockPin
and DataPin may be a constant, 0-15, or a variable that contains a
number 0-15 (e.g. B0) or a pin name (e.g. PORTA.0).

 \Bits optionally specifies the number of bits to be shifted out.  If it is not
specified, 8 bits are shifted out, independent of the variable type.  The
Bits shifted out are always the low order bits, regardless of the Mode
used, LSB or MSB.  Up to 32 Bits can be shifted out of a single (long)
variable.  If more than 32 Bits are required, multiple variables or
constants may be included between the square brackets.

The Mode names (e.g. LSBFIRST) are defined in the file
MODEDEFS.BAS.  To use them, add the line:

Include “modedefs.bas”

to the top of the PICBASIC PRO program.  BS1DEFS.BAS and
BS2DEFS.BAS already includes MODEDEFS.BAS.  Do not include it again
if one of these files is already included.  The Mode numbers may be used
without including this file.  Some Modes do not have a name.

For  Modes 0-1, the clock idles low, toggles high to clock in a bit, and
then returns low.  For  Modes 4-5, the clock idles high, toggles low to
clock in a bit, and then returns high.

Mode Mode No. Operation

LSBFIRST 0 Shift data out lowest bit first. 
Clock idles low.

MSBFIRST 1 Shift data out highest bit first. 
Clock idles low.

4 Shift data out lowest bit first. 
Clock idles high.

5 Shift data out highest bit first. 
Clock idles high.

The shift clock runs at about 50kHz, dependent on the oscillator.  The
active state is held to a minimum of 2 microseconds.  A DEFINE allows



PICBASIC PRO Compiler

151

the active state of the clock to be extended by an additional number of
microseconds up to 65,535 (65.535 milliseconds) to slow the clock rate. 
The minimum additional delay is defined by the PAUSEUS timing.  See its
section for the minimum for any given oscillator.  This DEFINE is not
available on 12-bit core PIC MCUs.

For example, to slow the clock by an additional 100 microseconds:

DEFINE SHIFT_PAUSEUS 100

The following diagram shows the relationship of the clock to the data for
the various modes:

      

SHIFTOUT 0,1,MSBFIRST,[B0,B1]
SHIFTOUT PORTA.1,PORTA.2,1,[wordvar\4]
SHIFTOUT PORTC.1,PORTB.1,4,[$1234\16, $56]



PICBASIC PRO Compiler

152

5.77.  SLEEP

SLEEP Period

Place microcontroller into low power mode for Period seconds. 
Period is 16-bits using PBP and PBPW, so delays can be up to 65,535
seconds (just over 18 hours).  For PBPL, Period is 32-bits so delays
can be quite, quite long.

SLEEP uses the Watchdog Timer so it is independent of the actual
oscillator frequency.  The granularity is about 2.3 seconds and may vary
based on device specifics and temperature.  This variance is unlike the
BASIC Stamp.  The change was necessitated because when the PIC
MCU executes a Watchdog Timer reset, it resets many of the internal
registers to predefined values.  These values may differ greatly from what
your program may expect.  By running the SLEEP command
uncalibrated, this issue is sidestepped.

SLEEP 60 ‘ Sleep for about 1 minute



PICBASIC PRO Compiler

153

5.78.  SOUND

SOUND Pin,[Note,Duration{,Note,Duration...}]

Generates tone and/or white noise on the specified Pin.  Pin is
automatically made an output.  Pin may be a constant, 0 - 15, or a
variable that contains a number 0 - 15 (e.g. B0) or a pin name (e.g.
PORTA.0).

Note 0 is silence. Notes 1-127 are tones.  Notes 128-255 are white
noise.  Tones and white noises are in ascending order (i.e. 1 and 128 are
the lowest frequencies, 127 and 255 are the highest).  Note 1 is about
78.74Hz and Note 127 is about 10,000Hz.

Duration is 0-255 and determines how long the Note is played in about
12 millisecond increments.  Note and Duration needn't be constants.

SOUND outputs TTL-level square waves.  Thanks to the excellent I/O
characteristics of the PIC MCU, a speaker can be driven through a
capacitor.  The value of the capacitor should be determined based on the
frequencies of interest and the speaker load.  Piezo speakers can be
driven directly.

Pin

10uF

SOUND PORTB.7,[100,10,50,10] ‘ Send 2 sounds
consecutively to
Pin7



PICBASIC PRO Compiler

154

5.79.  STOP

STOP

Stop program execution by executing an endless loop.  This does not
place the microcontroller into low power mode.  The microcontroller is still
working as hard as ever.  It is just not getting much done.

STOP ‘ Stop program dead in its tracks



PICBASIC PRO Compiler

155

5.80.  SWAP

SWAP Variable,Variable

Exchange the values between 2 variables.  Usually, it is a tedious
process to swap the value of 2 variables.  SWAP does it in one statement
without using any intermediate variables.  It can be used with bit, byte,
word and long variables.  Array variables with a variable index may not be
used in SWAP although array variables with a constant index are allowed.

temp = B0 ‘ Old way
B0 = B1
B1 = temp

SWAP B0,B1 ‘ One line way



PICBASIC PRO Compiler

156

5.81.  TOGGLE

TOGGLE Pin

Invert the state of the specified Pin.  Pin is automatically made an
output.  Pin may be a constant, 0 - 15, or a variable that contains a
number 0 - 15 (e.g. B0) or a pin name (e.g. PORTA.0).

Low 0 ‘ Start Pin0 as low
TOGGLE 0 ‘ Change state of Pin0 to high



PICBASIC PRO Compiler

157

5.82.  USBIN

USBIN Endpoint,Buffer,Countvar,Label

Get any available USB data for the Endpoint and place it in the
Buffer.  Buffer must be a byte array of suitable length to contain the
data.  Countvar should be set to the size of the buffer before USBIN is
executed.  It will contain the number of bytes transferred to the buffer. 
Label will be jumped to if no data is available.

This instruction may only be used with a PIC MCU that has an on-chip
USB port such as the low-speed PIC16C745 and 765, and the full-speed
PIC18F2450, 2455, 2550, 4450, 4455 and 4550.

The USB and USB18 subdirectories contain the modified Microchip USB
libraries as well as example programs.  USB programs require several
additional files to operate (which are in the USB or USB18 subdirectory),
some of which will require modification for your particular application. 
See the text file in the subdirectory for more information on the USB
commands.  The USB subdirectory is for the low-speed PIC16C devices
and the USB18 subdirectory is for the full-speed PIC18F devices.

USB communications is much more complicated than synchronous
(SHIFTIN and SHIFTOUT) and asynchronous (SERIN, SEROUT and so
forth) communications.  There is much more to know about USB
operation that can possibly be described here.  The USB information on
the Microchip web site needs to be studied.  Also, the book "USB
Complete" by Jan Axelson may be helpful.

cnt = 8
USBIN 1, buffer, cnt, idleloop



PICBASIC PRO Compiler

158

5.83.  USBINIT

USBINIT

USBINIT needs to be one of the first statements in a program that uses
USB communications.  It will initialize the USB portion of the PIC MCU.

This instruction may only be used with a PIC MCU that has an on-chip
USB port such as the low-speed PIC16C745 and 765, and the full-speed
PIC18F2450, 2455, 2550, 4450, 4455 and 4550.

The USB and USB18 subdirectories contain the modified Microchip USB
libraries as well as example programs.  USB programs require several
additional files to operate (which are in the USB or USB18 subdirectory),
some of which will require modification for your particular application. 
See the text file in the subdirectory for more information on the USB
commands.  The USB subdirectory is for the low-speed PIC16C devices
and the USB18 subdirectory is for the full-speed PIC18F devices.

USB communications is much more complicated than synchronous
(SHIFTIN and SHIFTOUT) and asynchronous (SERIN, SEROUT and so
forth) communications.  There is much more to know about USB
operation that can possibly be described here.  The USB information on
the Microchip web site needs to be studied.  Also, the book "USB
Complete" by Jan Axelson may be helpful.

USBINIT



PICBASIC PRO Compiler

159

5.84.  USBOUT

USBOUT Endpoint,Buffer,Count,Label

Take Count number of bytes from the array variable Buffer and send
them to the USB Endpoint.  If the USB buffer does not have room for
the data because of a pending transmission, no data will be transferred
and program execution will continue at Label.

This instruction may only be used with a PIC MCU that has an on-chip
USB port such as the low-speed PIC16C745 and 765, and the full-speed
PIC18F2450, 2455, 2550, 4450, 4455 and 4550.

The USB and USB18 subdirectories contain the modified Microchip USB
libraries as well as example programs.  USB programs require several
additional files to operate (which are in the USB or USB18 subdirectory),
some of which will require modification for your particular application. 
See the text file in the subdirectory for more information on the USB
commands.  The USB subdirectory is for the low-speed PIC16C devices
and the USB18 subdirectory is for the full-speed PIC18F devices.

USB communications is much more complicated than synchronous
(SHIFTIN and SHIFTOUT) and asynchronous (SERIN, SEROUT and so
forth) communications.  There is much more to know about USB
operation that can possibly be described here.  The USB information on
the Microchip web site needs to be studied.  Also, the book "USB
Complete" by Jan Axelson may be helpful.

USBOUT 1, buffer,4,outloop



PICBASIC PRO Compiler

160

5.85.  USBSERVICE

USBSERVICE

USBSERVICE needs to be executed repeatedly in the program.  Since the
USB code provided for the full-speed PIC18F devices is polled rather
than interrupt driven, USBSERVICE needs to be executed at least every
10ms throughout the program.  If it is not, the device may drop off the
USB bus.

When interacting with Windows, at the beginning of the program after
USBINIT, it is required that USBSERVICE be polled at about 250 us per
loop.  Even 1ms may be too slow.  It can take up to 5 seconds to
complete the initial interaction to get to the state of usb_device_state ==
CONFIGURED_STATE, but many times it will complete much more
quickly.  Then, you have to continue to poll USBSERVICE to complete the
passing of the HID data to the host. Doing it for another 0.5 seconds
seems to be adequate.

This instruction may only be used with a PIC MCU that has an on-chip
full-speed USB port such as the PIC18F2450, 2455, 2550, 4450, 4455
and 4550.

The USB18 subdirectory contains the modified Microchip USB libraries
as well as example programs.  USB programs require several additional
files to operate (which are in the USB18 subdirectory), some of which will
require modification for your particular application.  See the text file in the
subdirectory for more information on the USB commands.

USB communications is much more complicated than synchronous
(SHIFTIN and SHIFTOUT) and asynchronous (SERIN, SEROUT and so
forth) communications.  There is much more to know about USB
operation that can possibly be described here.  The USB information on
the Microchip web site needs to be studied.  Also, the book "USB
Complete" by Jan Axelson may be helpful.

USBSERVICE



PICBASIC PRO Compiler

161

5.86.  WHILE..WEND

WHILE Condition
Statement...

WEND

Repeatedly execute Statements WHILE Condition is true.  When the
Condition is no longer true, execution continues at the statement
following the WEND.  Condition may be any comparison expression.

i = 1
WHILE i <= 10

Serout 0,N2400,[”No:”,#i,13,10]
i = i + 1

WEND



PICBASIC PRO Compiler

162

5.87.  WRITE

WRITE Address,Value

Write byte Value to the on-chip EEPROM at the specified Address.
This instruction may only be used with a PIC MCU that has an on-chip
EEPROM data area such as the PIC12F683, 16F84 and the 16F87x
series.

WRITE is used to set the values of the on-chip EEPROM at runtime.  To
set the values of the on-chip EEPROM at device programming-time, use
the DATA or EEPROM statement.

Each WRITE is self-timed and takes up to 10 milliseconds to execute on
a PIC MCU.

If interrupts are used in a program, they must be turned off (masked, not
DISABLEd) before executing a WRITE, and turned back on (if desired)
after the write instruction is complete.  An interrupt occurring during a
WRITE may cause it to fail.  The following DEFINE turns interrupts off and
then back on within a WRITE command.  Do not use this DEFINE if
interrupts are not used in the program.

DEFINE WRITE_INT 1

WRITE will not work on devices with on-chip I2C interfaced serial
EEPROM like the PIC12CE67x and 16CE62x parts.  Use the I2CWRITE
instruction instead.

WRITE 5,B0 ‘ Send value in B0 to EEPROM
location 5

To write a word, each of the 2 bytes that make up the word must be
written separately:

w Var Word
WRITE 0,w.Byte0
WRITE 1,w.Byte1



PICBASIC PRO Compiler

163

5.88.  WRITECODE

WRITECODE Address,Value

Write Value to the code space at location Address.

Some PIC16Fxxx and PIC18Fxxxx devices allow program code to be
written at run-time.  While writing self-modifying code can be a dangerous
technique, it does allow non-volatile data storage above 64 - 1024 bytes. 
One must be very careful not to write over active program memory.

The listing file may be examined to determine program addresses.

For PIC16Fxxx devices, 14-bit-sized data can be written to word code
space Addresses.

For PIC18Fxxxx devices, byte or word-sized data can be written to byte
(rather than word) code space Addresses.  The variable size of Value
determines the number of bytes written.  Bit- and byte-sized variables
write 1 byte.  Word- and long-size variables write 2 bytes to 2 sequential
locations.

For block accessed devices, like the PIC16F877a and 18F452, a
complete block must be written at once.  This write block size is different
for different PIC MCUs.  See the Microchip data sheet for the particular
device for information on the block size.

Additionally, some flash PIC MCUs, like the PIC18Fxxxx series, require a
portion of the code space to be erased before it can be rewritten with
WRITECODE.  See the section on ERASECODE for more information.

If interrupts are used in a program, they must be turned off (masked, not
DISABLEd) before executing a WRITECODE, and turned back on (if
desired) after the write instruction is complete.  An interrupt occurring
during a WRITECODE may cause it to fail.

Flash program writes must be enabled in the configuration for the PIC
MCU at device programming time for WRITECODE to be able to write.

WRITECODE $100,w ‘ Send value in W to code
space location $100



PICBASIC PRO Compiler

164

5.89.  XIN

XIN DataPin,ZeroPin,{Timeout,Label,}[Var{,...}]

Receive X-10 data and store the House Code and Key Code in Var.

XIN is used to receive information from X-10 devices that can send such
information.  X-10 modules are available from a wide variety of sources
under several trade names.  An interface is required to connect the
microcontroller to the AC power line.  The TW-523 for two-way X-10
communications is required by XIN.  This device contains the power line
interface and isolates the microcontroller from the AC line.  Since the X-
10 format is patented, this interface also covers the license fees.

DataPin is automatically made an input to receive data from the X-10
interface.  ZeroPin is automatically made an input to received the zero
crossing timing from the X-10 interface.  Both pins should be pulled up to
5 volts with 4.7K resistors.  DataPin and ZeroPin may be a constant,
0-15, or a variable that contains a number 0-15 (e.g. B0) or a pin name
(e.g. PORTA.0).

An optional Timeout and Label may be included to allow the program
to continue if X-10 data is not received within a certain amount of time. 
Timeout is specified in AC power line half-cycles (approximately 8.33
milliseconds).

XIN only processes data at each zero crossing of the AC power line as
received on ZeroPin.  If there are no transitions on this line, XIN will
effectively wait forever.

If Var is word-sized, each House Code received is stored in the upper
byte of the word.  Each received Key Code is stored in the lower byte of
the word.  If Var is a byte, only the Key Code is stored.

The House Code is a number between 0 and 15 that corresponds to the
House Code set on the X-10 module A through P.

The Key Code can be either the number of a specific X-10 module or the
function that is to be performed by a module.  In normal practice, first a
command specifying the X-10 module number is sent, followed by a
command specifying the function desired.  Some functions operate on all
modules at once so the module number is unnecessary.  Hopefully, later



PICBASIC PRO Compiler

165

examples will clarify things.  Key Code numbers 0-15 correspond to
module numbers 1-16.

These Key Code numbers are different from the actual numbers sent and
received by the X10 modules.  This difference is to match the Key Codes
in the BS2.  To remove this Stamp translation, the following DEFINE may
be used:

DEFINE XINXLAT_OFF 1

XIN is not supported on 12-bit core PIC MCUs due to RAM and stack
constraints.

XOUT below lists the functions as well as the wiring information.

housekey Var Word

‘ Get X-10 data
loop: XIN PORTA.2,PORTA.0,[housekey]

‘ Display X-10 data on LCD
Lcdout $fe,1,“House=”,#housekey.byte1,
“Key=”,#housekey.byte0

Goto loop ‘ Do it forever

‘ Check for X-10 data, go to nodata if none
XIN PORTA.2,PORTA.0,1,nodata,[housekey]



PICBASIC PRO Compiler

166

5.90.  XOUT

XOUT DataPin,ZeroPin,
[HouseCode\KeyCode{\Repeat}{,...}]

Send HouseCode followed by KeyCode, Repeat number of times in X-
10 format.  If the optional Repeat is left off, 2 times (the minimum) is
assumed.  Repeat is usually reserved for use with the Bright and Dim
commands.

XOUT is used to send control information to X-10 modules.  These
modules are available from a wide variety of sources under several trade
names.  An interface is required to connect the microcontroller to the AC
power line.  Either the PL-513 for send only, or the TW-523 for two-way
X-10 communications are required.  These devices contain the power
line interface and isolate the microcontroller from the AC line.  Since the
X-10 format is patented, these interfaces also cover the license fees.

DataPin is automatically made an output to send data to the X-10
interface.  ZeroPin is automatically made an input to received the zero
crossing timing from the X-10 interface.  It should be pulled up to 5 volts
with a 4.7K resistor.  DataPin and ZeroPin may be a constant, 0-15, or
a variable that contains a number 0-15 (e.g. B0) or a pin name (e.g.
PORTA.0).

XOUT only processes data at each zero crossing of the AC power line as
received on ZeroPin.  If there are no transitions on this line, XOUT will
effectively wait forever.

HouseCode is a number between 0 and 15 that corresponds to the
House Code set on the X-10 module A through P.  The proper
HouseCode must be sent as part of each command.

The KeyCode can be either the number of a specific X-10 module or the
function that is to be performed by a module.  In normal practice, first a
command specifying the X-10 module number is sent, followed by a
command specifying the function desired.  Some functions operate on all
modules at once so the module number is unnecessary.  Hopefully, later
examples will clarify things.  KeyCode numbers 0-15 correspond to
module numbers 1-16.

The KeyCode (function) names (e.g. unitOn) are defined in the file
MODEDEFS.BAS.  To use them, add the line:



PICBASIC PRO Compiler

167

Include “modedefs.bas”

to the top of the PICBASIC PRO program.  BS1DEFS.BAS and
BS2DEFS.BAS already includes MODEDEFS.BAS.  Do not include it again
if one of these files is already included.  The KeyCode numbers may be
used without including this file.

KeyCode KeyCode No. Operation

unitOn %10010 Turn module on

unitOff %11010 Turn module off

unitsOff %11100 Turn all modules off

lightsOn %10100 Turn all light modules on

lightsOff %10000 Turn all light modules off

bright %10110 Brighten light module

dim %11110 Dim light module

These Keycode numbers are different from the actual numbers sent and
received by the X10 modules.  This difference is to match the Keycodes
in the BS2.  To remove this Stamp translation, the following DEFINE may
be used:

DEFINE XOUTXLAT_OFF 1

XOUT is not supported on 12-bit core PIC MCUs due to RAM and stack
constraints.

Wiring to the X-10 interfaces requires 4 connections.  Output from the X-
10 interface (zero crossing and receive data) are open-collector and
require a pull up resistor of around 4.7K to 5 volts.  Wiring tables for each
interface is shown below:



PICBASIC PRO Compiler

168

PL-513 Wiring

Wire No. Wire Color Connection

1 Black Zero crossing output

2 Red Zero crossing common

3 Green X-10 transmit common

4 Yellow X-10 transmit input

TW-523 Wiring

Wire No. Wire Color Connection

1 Black Zero crossing output

2 Red Common

3 Green X-10 receive output

4 Yellow X-10 transmit input

house Var Byte
unit Var Byte

Include “modedefs.bas”

house = 0 ‘ Set house to 0 (A)
unit = 8 ‘ Set unit to 8 (9)
‘ Turn on unit 8 in house 0
XOUT PORTA.1,PORTA.0,[house\unit,house\unitOn]

‘ Turn off all the lights in house 0
XOUT PORTA.1,PORTA.0,[house\lightsOff]

‘ Blink light 0 on and off every 10 seconds
XOUT PORTA.1,PORTA.0,[house\0]

loop: XOUT PORTA.1,PORTA.0,[house\unitOn]
Pause 10000 ‘ Wait 10 seconds

XOUT PORTA.1,PORTA.0,[house\unitOff]
Pause 10000 ‘ Wait 10 seconds

Goto loop



PICBASIC PRO Compiler

169

6.  Structure of a Compiled Program

PBP is designed to be easy to use.  Programs can be compiled and run
with little thought to PBP's internal workings.  Some people, however,
only have confidence in a product when they understand its internal
workings.  Others are just plain curious.

This section is for them.  It describes the files used and output generated
by PBP and gives some idea of what is going on.

6.1.  Target Specific Headers

Three target (PIC MCU) specific header files are used when a program is
compiled.  One is used by PBP, the other two are included for use by the
assembler.

A file with the name of the microcontroller followed by the extension .BAS
contains chip specific information needed by PBP.  This includes the
memory profile of the chip, which library it uses, and includes for the
definition of the variables it needs.  For the PIC16F84, the default
microcontroller, the file is named 16F84.BAS.

A file with the name of the microcontroller followed by the extension .INC
is included in the generated .ASM file to give the assembler information
about the chip, including the default configuration parameters (oscillator
mode, Watchdog Timer setting, etc.).  For the PIC16F84, for example,
the file is named 16F84.INC.

Finally, the assembler has its own include file that defines the addresses
of the microcontroller registers.  This file is usually named something on
the order of M16F8x.INC and is in the INC subdirectory.

6.2.  The Library Files

PBP includes a set of library files that contain all of the code and
definition files for a particular group of microcontrollers.  In the case of
14-bit core PIC MCUs, for example, these files start with the name
PBPPIC14.

PBPPIC14.LIB contains all of the assembly language subroutines used
by the compiler.  PBPPIC14.MAC contains all of the macros that call
these subroutines.  Most PICBASIC PRO commands consist of a macro
and, usually, an associated library subroutine.



PICBASIC PRO Compiler

170

PBPPIC14.RAM contains the VAR statements that allocate the memory
needed by the library.

PIC14EXT.BAS contains the external definitions that tells PBP all of the
14-bit core PIC MCU register names.

6.3.  PICBASIC PRO Generated Code

A PICBASIC PRO compiled program is built in several stages.  First PBP
creates the .ASM file.  It then builds a custom .MAC file that contains only
the macros from the macro library that are used in the .ASM file.  If
everything is error free up to this point, it launches the assembler.

The assembler generates its own set of files.  These include the .HEX
final output file and possibly listing and debugging files.

6.4.  .ASM File Structure

The .ASM file has a very specific structure.  Things must be done in a
particular order for everything to work out properly.

The first item placed in the file is an equate defining which assembler is
to be used, followed by an INCLUDE to tell the assembler which
microprocessor is the target and give it some basic information, such as
the configuration data.

Next, all of the variable allocations and aliasing is listed.  EEPROM
initialization is next, if called for.

An INCLUDE for the macro file is then placed in the file, followed by an
INCLUDE for the library subroutines.

Finally, the actual program code is incorporated.  This program code is
simply a list of macros that were generated from the PICBASIC PRO
lines.



PICBASIC PRO Compiler

171

7.  Other PICBASIC PRO Considerations

7.1.  How Fast is Fast Enough?

By default, the PICBASIC PRO Compiler generates programs intended to
be run on a PIC MCU with a 4MHz crystal or ceramic resonator.  All of
the time-sensitive instructions assume a 1 microsecond instruction time
for their delays.  This allows a PAUSE 1000, for example, to wait 1
second and the SERIN and SEROUT command’s baud rates to be
accurate.

There are times, however, when it would be useful to run the PIC MCU at
a frequency other than 4MHz.  Even though the compiled programs move
along at a pretty good clip, it might be nice to run them even faster.  Or
maybe it is desirable to do serial input or output at 19,200 baud or higher.

PICBASIC PRO programs may be run at clock frequencies other than
4MHz in a couple of different ways.  The first is to simply use an oscillator
other than 4MHz and don’t tell PBP.  This can be a useful technique if
you pay attention to what happens to the time dependent instructions.

If you wish to run the serial bus at 19,200 as described above, you would
simply clock the microcontroller with an 8MHz crystal rather than a 4MHz
crystal.  This, in effect, makes everything run twice as fast, including the
SERIN and SEROUT commands.  If you tell SERIN or SEROUT to run at
9600 baud, the doubling of the crystal speed will double the actual baud
rate to 19,200 baud.

However, keep in mind commands such as PAUSE and SOUND will also
run twice as fast.  The PAUSE 1000 mentioned above would only wait .5
seconds with an 8MHz crystal before allowing program execution to
continue.

The preferred technique is to use a different oscillator frequency and tell
PBP of your intentions.  This is done through the use of a DEFINE. 
DEFINE, as demonstrated in the LCDOUT command in a previous
section, is used to tell PBP to use something other than its defaults.

Normally, PBP defaults to using a 4MHz oscillator.  Adding the statement:

DEFINE OSC 8



PICBASIC PRO Compiler

172

near the beginning of the PICBASIC PRO program tells PBP an 8MHz
oscillator will be used instead.  The acceptable oscillator definitions are:

OSC Minimum delay Minimum delay PIC18Xxxxx

3 (3.58) 20us 20us**

4 24us 19us**

8 12us 9us**

10 8us 7us**

12 7us 5us**

16 5us 4us**

20 3us 3us**

24 3us 2us**

25,32,33 2us* 2us**

40,48,64 - 1us**

* PIC17Cxxx only.
** PIC18Xxxxx only.

Telling PBP the oscillator frequency allows it to compensate and produce
the correct timing for COUNT, DEBUG, DEBUGIN, DTMFOUT, FREQOUT,
HPWM, HSERIN, HSERIN2, HSEROUT, HSEROUT2, I2CREAD, I2CWRITE,
LCDIN, LCDOUT, OWIN, OWOUT, PAUSE, PAUSEUS, SERIN, SERIN2,
SEROUT, SEROUT2, SHIFTIN, SHIFTOUT, SOUND, XIN and XOUT.

Changing the oscillator frequency may also be used to enhance the
resolution of the PULSIN, PULSOUT and RCTIME instructions.  At 4MHz
these instructions operate with a 10 microsecond resolution.  If a 20MHz
crystal is used, the resolution is increased 5 times to 2 microseconds. 
For PBP and PBPW (not PBPL), there is a tradeoff, however.  The pulse
width is still measured to a 16-bit word variable.  With a 2 microsecond
resolution, the maximum measurable pulse width would be 131,070
microseconds.  For PBPL, a 32-bit variable may be used to allow
measurement of very long pulses.

Going the other direction and running with a 32.768kHz oscillator is
problematic.  It may be desirable to attempt this for reduced power
consumption reasons and it will work to some extent.  The SERIN and
SEROUT commands will be unusable and the Watchdog Timer may



PICBASIC PRO Compiler

173

cause the program to restart periodically.  Experiment to find out if your
particular application is possible at this clock speed.  It doesn’t hurt to try.

7.2.  Configuration Settings

As mentioned earlier, the default configuration settings for a particular
device is set in the .INC file with the same name as the device, e.g.
16F84.INC.  These settings can be changed at the time the device is
physically programmed.

The oscillator defaults to XT on most devices.  This is the setting for the
default 4MHz oscillator.  If a faster oscillator is used, this setting must be
changed to HS.

The Watchdog Timer is enabled by PBP.  It is used, along with the TMR0
prescaler, to support the NAP and SLEEP instructions.  If neither of the
instructions are used in a program, the Watchdog Timer may be disabled
and the prescaler used for something else.

Code Protect defaults to off but may be set to on when the device is
physically programmed.  Do not code protect a windowed device.

See the Microchip data sheet for the particular device for the
configuration data specific to that part.

7.3.  RAM Usage

In general it is not necessary to know how RAM is allocated by PBP in
the microcontroller.  PBP takes care of all the details so the programmer
doesn’t have to.  However there are times when this knowledge could be
useful.

Variables are stored in the PIC MCU’s RAM registers.  The first available
RAM location is $0C for the PIC16F84 and some of the smaller PIC
MCUs, and $20 for the PIC16C74 and other larger PIC MCUs.  Refer to
the Microchip PIC MCU data books for the actual location of the start of
the RAM registers for a given microcontroller.

The variables are assigned to RAM sequentially in a particular order. 
The order is long arrays first (if any), followed by word, byte and bit
arrays.  Then space is allocated for longs, words, bytes and finally
individual bits.  Bits are packed into bytes as possible.  This order makes



PICBASIC PRO Compiler

174

the best use of available RAM.  (For PIC18Xxxxx devices, arrays are
allocated last.)

Arrays must fit entirely within one RAM bank on 12-bit, 14-bit or
PIC17Cxxx devices.  Arrays may span banks on PIC18Xxxxx devices. 
Byte-, word- and long-sized arrays are only limited in length by the
amount of available memory on PIC18Xxxxx devices.  The compiler will
assure that arrays, as well as simple variables, will fit in memory before
successfully compiling.

You can suggest to PBP a particular bank to place the variable in:

penny VAR WORD BANK0
nickel VAR BYTE BANK1

If specific bank requests are made, those are handled first.  If there is not
enough room in a requested bank, the first available space is used and a
warning is issued.

You can even set specific addresses for variables.  In most cases, it is
better to let PBP handle the memory mapping for you.  But in some
cases, such as storage of the W register in an interrupt handler, it is
necessary to define a fixed address.  This may be done in a similar
manner to bank selection:

w_store VAR BYTE $20

Several system variables, using about 24 bytes of RAM, are automatically
allocated by the compiler for use by library subroutines.  These variables
are allocated in the file PBPPIC14.RAM and must be in bank 0 (bank A
on PIC18Xxxxx devices).

User variables are prepended with an underscore (_) while system
variables have no underscore so that they do not interfere with each
other.

R0 VAR WORD SYSTEM

BASIC Stamp variables B0 - B25 and W0 - W12 are not automatically
allocated.  It is best to create your own variables using the VAR
instruction.  However if you want these variables to be created for you,
simply include the appropriate file,  BS1DEFS.BAS or BS2DEFS.BAS, at
the beginning of the PICBASIC PRO program.  These variables allocate



PICBASIC PRO Compiler

175

space separate and apart from any other variables you may later create. 
This is different than the BS2 where using the canned variables and user
created variables can get you into hot water.

Additional temporary variables may be generated automatically by the
compiler to help it sort out equations.  A listing of these variables, as well
as the entire memory map, may be seen in the generated .ASM or .LST
file.

If there is not enough RAM memory available for the variables, an unable
to fit variable in memory error message will be issued.

7.4.  Reserved Words

Reserved words are simply that - words that are reserved for use by the
compiler and may not be defined as either variable names or labels. 
These reserved words may be the names of commands, pseudo-ops,
variable types, variables that the compiler uses internally or the names of
the PIC MCU registers.  An error will be generated if an attempt is made
to re-declare any of these reserved words.

The pseudo-ops, variable types and commands keywords are listed in
their appropriate sections and in Appendix C.  The names of the PIC
MCU registers are defined in the file PIC??EXT.BAS, where ?? is the
core type.  The internal registers used by the compiler are defined in files
ending with .RAM.  If the files BS1DEFS.BAS, BS2DEFS.BAS or
MODEDEFS.BAS are included, the definitions inside essentially become
reserved words and may not be redefined.

7.5.  Life After 2K

Yes, there is life after 2K using the PICBASIC PRO Compiler.

PIC MCUs have a segmented code space.  PIC MCU instructions in 14-
bit core parts such as Call and Goto only have enough bits within them to
address 2K of program space.  To get to code outside the 2K boundary,
the PCLATH register must be set before each Call or Goto.

PBP automatically sets these PCLATH bits for you.  There are a few
restrictions imposed, however.  The PICBASIC PRO library must fit
entirely into page 0 of code space (the first half of page 0 for 12-bit core
devices).  Normally this is not an issue as the library is the first thing in a
PICBASIC PRO program and the entire library is smaller than 2K. 



PICBASIC PRO Compiler

176

However, attention must be payed to this issue if additional libraries are
used.

Assembly language interrupt handlers must also fit into page 0 of code
space.  Putting them at the beginning of the PICBASIC PRO program
should make this work.  See the upcoming section on assembly language
for more information.

The addition of instructions to set the PCLATH bits does add overhead to
the produced code.  PBP will set the PCLATH bits before any Call or
Goto instruction on 12-bit core PIC MCUs with more than 512 words of
code space, 14-bit core devices with more than 2K of code space and
PIC17Cxxx devices with more than 8K of code space.

There are specific PICBASIC PRO instructions to assist with the 2K
issues.

BRANCHL was created to allow branching to labels that may be further
than 1K locations away on PIC18Xxxxx devices or on the other side of a
page boundary for all other devices.  If the PIC MCU has only one code
page of program space, BRANCH may be used as it takes up less space
than BRANCHL.  If the microcontroller has more than one page of code
space, and you cannot be certain that BRANCH will always act within the
same page, use BRANCHL.

The assembler may issue a warning that a page boundary has been
crossed.  This is normal and is there to suggest that you check for any
BRANCHes that may cross a page boundary.

7.6.  12-Bit Core Considerations

Because of the architecture of the 12-bit core PIC MCUs, programs
compiled for them by PBP will, in general, be larger and slower that
programs compiled for the other PIC MCU families.  In many cases,
choosing a device from one of these other families will be more
appropriate.  However, many useful programs can be written and
compiled for the 12-bit core devices.

The two main programming limitations that will most likely occur are
running out of RAM memory for variables and running past the first 256
word limit for the library routines.  These limitations have made it
necessary to eliminate some compiler commands and modify the
operation of some others.



PICBASIC PRO Compiler

177

The compiler for 12-bit core PIC MCUs uses between 20 and 22 bytes of
RAM for its internal variables, with additional RAM used for any
necessary temporary variables.  This RAM allocation includes a 4 level
software stack so that the BASIC program can still nest GOSUBs up to 4
levels deep.  Some PIC MCU devices only have 24 or 25 bytes of RAM
so there is very little space for user variables on those devices.  If the
Unable to Fit Variable error message occurs during compilation, choose
another PIC MCU with more general purpose RAM.

12-bit core PIC MCUs can call only into the first half (256 words) of a
code page.  Since the compiler's library routines are all accessed by
calls, they must reside entirely in the first 256 words of the PIC MCU
code space.  Many library routines, such as I2CREAD, are fairly large.  It
may only take a few routines to overrun the first 256 words of code
space.  If it is necessary to use more library routines that will fit into the
first half of the first code page, it will be necessary to move to a 14- or
16-bit core PIC MCU instead of the 12-bit core device.



PICBASIC PRO Compiler

178



PICBASIC PRO Compiler

179

8.  Assembly Language Programming

Assembly language routines can be a useful adjunct to a PICBASIC PRO
Compiler program.  While in general most tasks can be done completely
in BASIC, there are times when it might be necessary to do a particular
task faster, or using a smaller amount of code space, or just differently
than the compiler does it.  At those times it is useful to have the
capabilities of an in-line assembler.

It can be beneficial to write most of a program quickly using the
PICBASIC PRO language and then sprinkle in a few lines of assembly
code to increase the functionality.  This additional code may be inserted
directly into the PBP program or included as another file.

8.1.  Two Assemblers - No Waiting

Upon execution, PBP first compiles the program into assembly language
and then automatically launches an assembler.  This converts the
assembler output into the final .HEX file which can be programmed into a
microcontroller.

Two different assemblers may be used with PBP: PM, our assembler,
and MPASM, Microchip’s assembler.  There are benefits and drawbacks
to using each assembler.  PM is handy because it can be faster than
MPASM and can assemble much larger programs in DOS.  PM includes
an 8051-style instruction set that is more intuitive than the Microchip
mnemonics.  For complete information on the PM Assembler, see the
PM.TXT file on disk.

MPASM, on the other hand, has the capability of creating a .COD file. 
This file contains additional information that can be very useful with
simulators and emulators.  MPASM is also more compatible with the wide
variety of assembly language examples found on the web and in
Microchip’s data books.

PBP defaults to using PM.  To use MPASM with PBP, install all of the
MPASM files into their own subdirectory.  This subdirectory must also be
in the DOS PATH.  See the file MPLAB.TXT on the disk and the
microEngineering Labs, Inc. web site for more details.

If the command line option "-ampasmwin" is used, MPASM will be
launched following compilation to complete the process.  MPASM will
display its own screen with its progress.



PICBASIC PRO Compiler

180

PBPW -ampasmwin filename

8.2.  Programming in Assembly Language

PBP programs may contain a single line of assembly language preceded
by an “at” symbol (@), or one or more lines of assembly code preceded by

the ASM keyword and ended by the ENDASM keyword.  Both keywords
appear on their lines alone.

@ bsf PORTA,0

Asm
bsf STATUS,RP0
bcf TRISA,0
bcf STATUS,RP0

Endasm

The lines of assembly are copied verbatim into the assembly output file. 
This allows the PBP program to use all of the facilities of the assembler. 
This also, however, requires that the programmer have some familiarity
with the PBP libraries.  PBP’s  notational conventions are similar to other
commercial compilers and should come as no shock to programmers
experienced enough to attempt in-line assembly.

All identifier names defined in a PBP program are similarly defined in
assembly, but with the name preceded with an underscore ( _ ).  This
allows access to user variables, constants, and even labeled locations, in
assembly:

B0 Var Byte

Asm
movlw 10
movwf _B0

Endasm

Thus, any name defined in assembly starting with an underscore has the
possibility of conflicting with a PBP generated symbol.  If conflict is
avoided, can these underscored assembly values be accessed from
PBP?  No.  Remember, the underscored names generated by PBP are
only shadows of the actual information defined in the compiler.  Since in-
line assembly is copied directly to the output file and not processed by the
compiler, the compiler not only lacks any type or value information about
assembly symbols, it is completely unaware that they exist.  If variables



PICBASIC PRO Compiler

181

are to be shared between assembly and PBP, you must define the
variables in PBP.

Just as underscored symbols have possible conflicts, so do symbols not
starting with underscores.  The problem is internal library identifiers. 
Luckily, most library identifiers contain a '?' or make reference to one of
the working registers (such as R0).  Avoiding such names should reduce
problems.  If you should have a name collision, the assembler will report
the duplicate definitions as an error.

In assembly language the comment designator changes from the single
quote ( ‘ ) in PICBASIC PRO to a semicolon ( ; ).

‘ PICBASIC PRO comment
; Assembly language comment

8.3.  Placement of In-line Assembly

PBP statements execute in order of their appearance in the source.  The
organization of the code is as follows: Starting at location 0, the reset
vector, PBP inserts some startup code followed by a jump to INIT.  Next,
the called-for library subroutines are stuffed in.  At the end of the library is
INIT, where any additional initialization is completed.  Finally, at the label
MAIN, the compiled PICBASIC PRO statement code is added.

The first executable line that appears in the PICBASIC PRO source is
where the program starts execution.  That statement literally appears in
memory right behind the controller’s startup and library code, right after
the MAIN label.

The tendency of programmers is to place their own library functions
written using the in-line assembler either before or after their code.  In
light of the above explanation, this could create some obvious problems. 
If they appear early in the program, the assembly routines execute prior
to any PBP instructions (some programmers will invariably exploit this
feature).  If they appear at the tail of the program, execution which "falls
off the end" of the PBP statements may mysteriously find themselves
unintentionally executing assembly routines.

There are a couple of deciding factors as to where might be the best
place to insert assembly language subroutines.  If the entire program fits
into one code page, place your assembly routines after your PBP code.  If



PICBASIC PRO Compiler

182

you need to terminate your program, explicitly place an END or STOP
statement at the end of your code rather than floating off into space.

If the program is longer than one code page, it could make more sense to
put the assembly language routines at the beginning of the PBP program. 
This should ensure them of being in the first code page so that you know
where to find them.  This is the way assembly language interrupt routines
should be handled.

If the routines are placed at the front, you must include a GOTO (or JMP)
around the code to the first executable PBP statement.  See the section
on interrupts for an example of this.

The actual code for the assembly language routines may be included in
your program or in a separate file.  If a  routine is used by only one
particular PICBASIC PRO program, it would make sense to include the
assembler code within the PBP source file.  This routine can then be
accessed using the CALL command.

If it is used by several different PBP programs, a separate file containing
the assembly routines can simply be included at the appropriate place in
the PICBASIC PRO source:

Asm
Include “myasm.inc”

Endasm

8.4.  Another Assembly Issue

PIC MCU registers are banked. PBP keeps track of which register bank it
is pointing to at all times.  It knows if it is pointing to a TRIS register, for
example, it needs to change the bank select bits before it can access a
PORT.

It also knows to reset the bank select bits to 0 before making a Call or a
Goto.  It does this because it can’t know the state of the bank select bits
at the new location.  So anytime there is a change of locale or a label that
can be called or jumped to, the bank select bits are zeroed.

It also resets the bank select bits before each ASM and the @ assembler
shortcut.  Once again, the assembler routine won’t know the current state
of the bits so they are set to a known state.  The assembler code must be
sure to reset the bank select bits before it exits, if it has altered them.



PICBASIC PRO Compiler

183

9.  Interrupts

Interrupts can be a scary and useful way to make your program really
difficult to debug.

Interrupts are triggered by hardware events, either an I/O pin changing
state or a timer timing out and so forth.  If enabled (which by default they
aren’t), an interrupt causes the processor to stop whatever it is doing and
jump to a specific routine in the microcontroller called an interrupt
handler.

Interrupts are not for the faint of heart.  They can be very tricky to
implement properly, but at the same time they can provide very useful
functions.  For example, an interrupt could be used to buffer serial input
data behind the scenes while the main PICBASIC PRO program is off
doing something else.  (This particular usage would require a
microcontroller with a hardware serial port.)

There are many ways to avoid using interrupts.  Quickly polling a pin or
register bit instead is usually fast enough to get the job done.  Or you can
check the value of an interrupt flag without actually enabling interrupts.

However, if you just gotta do it, here are some hints on how to go about
it.

The PICBASIC PRO Compiler has two different mechanisms to handle
interrupts.  The first is simply to write the interrupt handler in assembler
and tack it onto the front of a PBP program.  The second method is to
use the PICBASIC PRO statement ON INTERRUPT.  Each method will
be covered separately, after we talk about interrupts in general.

9.1.  Interrupts in General

When an interrupt occurs, the PIC MCU stores the address of the next
instruction it was supposed to execute on the stack and jumps to location
4.  The first thing this means is that you need an extra location on the
hardware stack, which is only 8 deep on the 14-bit core devices to begin
with.

The PICBASIC PRO library routines can use up to 4 stack locations
themselves.  The remaining 4 (12 for PIC17Cxxx and 27 for PIC18Xxxxx)
are reserved for CALLs and nested BASIC GOSUBs.  You must make
sure that your GOSUBs are only nested 3 (11 for PIC17Cxxx and 26 for



PICBASIC PRO Compiler

184

PIC18Xxxxx) deep at most with no CALLs within them in order to have a
stack location available for the return address.  If your interrupt handler
uses the stack (by doing a Call or GOSUB itself for example), you’ll need
to have additional stack space available.

Once you have dealt with the stack issues, you need to enable the
appropriate interrupts.  This usually means setting the INTCON register. 
Set the necessary enable bits along with Global Interrupt Enable.  For
example:

INTCON = %10010000

enables the interrupt for RB0/INT.  Depending on the actual interrupt
desired, you may also need to set one of the PIE registers.

Refer to the Microchip PIC MCU data books for additional information on
how to use interrupts.  They give examples of storing processor context
as well as all the necessary information to enable a particular interrupt. 
This data is invaluable to your success.

Finally, select the best technique with which to handle your particular
interrupts.

9.2.  Interrupts in BASIC

The easiest way to write an interrupt handler is to write it in PICBASIC
PRO using the ON INTERRUPT statement.  ON INTERRUPT tells PBP to
activate its internal interrupt handling and to jump to your BASIC interrupt
handler as soon as it can after receiving an interrupt.  Which brings us
the first issue.

Using ON INTERRUPT, when an interrupt occurs PBP simply flags the
event and immediately goes back to what it was doing.  It does not
immediately vector to your interrupt handler.  Since PBP statements are
not re-entrant (PBP must finish the statement that is being executed
before it can begin a new one) there could be considerable delay
(latency) before the interrupt is handled.

As an example, lets say that the PICBASIC PRO program just started
execution of a Pause 10000 when an interrupt occurs.  PBP will flag the
interrupt and continue with the PAUSE.  It could be up to 10 seconds later
before the interrupt handler is executed.  If it is buffering characters from
a serial port, many characters will be missed.



PICBASIC PRO Compiler

185

To minimize the problem, use only statements that don’t take very long to
execute.  For example, instead of Pause 10000, use Pause 1 in a long
FOR..NEXT loop.  This will allow PBP to complete each statement more
quickly and handle any pending interrupts.

If interrupt processing needs to occur more quicky than can be provided
by ON INTERRUPT, interrupts in assembly language should be used.

Exactly what happens when ON INTERRUPT is used is this: A short
interrupt handler is placed at location 4 in the PIC MCU.  This interrupt
handler is simply a Return.  What this does is send the program back to
what it was doing before the interrupt occurred.  It doesn’t require any
processor context saving.  What it doesn’t do is re-enable Global
Interrupts as happens using an Retfie.

A Call to a short subroutine is placed before each statement in the
PICBASIC PRO program once an ON INTERRUPT is encountered.  This
short subroutine checks the state of the Global Interrupt Enable bit.  If it is
off, an interrupt is pending so it vectors to the users interrupt handler.  If it
is still set, the program continues with the next BASIC statement, after
which, the GIE bit is checked again, and so forth.

When the RESUME statement is encountered at the end of the BASIC
interrupt handler, it sets the GIE bit to re-enable interrupts and returns to
where the program was before the interrupt occurred.  If RESUME is given
a label to jump to, execution will continue at that location instead.  All
previous return addresses will be lost in this case.

DISABLE stops PBP from inserting the Call to the interrupt checker after
each statement.  This allows sections of code to execute without the
possibility of being interrupted.  ENABLE allows the insertion to continue.

A DISABLE should be placed before the interrupt handler so that it will
not keep getting restarted by checking the GIE bit.

If it is desired to turn off interrupts for some reason after ON INTERRUPT
is encountered, you must not turn off the GIE bit.  Turning off this bit tells
PBP an interrupt has happened and it will execute the interrupt handler
forever.  Instead set:

INTCON = $80



PICBASIC PRO Compiler

186

This disables all the individual interrupts but leaves the Global Interrupt
Enable bit set.

9.3.  Interrupts in Assembler

Interrupts in assembly language are a little trickier.

Since you have no idea of what the processor was doing when it was
interrupted, you have no idea of the state of the W register, the STATUS
flags, PCLATH or even what register page you are pointing to.  If you
need to alter any of these, and you probably will, you must save the
current values so that you can restore them before allowing the
processor to go back to what it was doing before it was so rudely
interrupted.  This is called saving and restoring the processor context.

If the processor context, upon return from the interrupt, is not left exactly
the way you found it, all kinds of subtle bugs and even major system
crashes can and will occur.

This of course means that you cannot even safely use the compiler’s
internal variables for storing the processor context.  You cannot tell which
variables are in use by the library routines at any given time.

You should create variables in the PICBASIC PRO program for the
express purpose of saving W, the STATUS register and any other
register that may need to be altered by the interrupt handler.  These
variables should not be otherwise used in the BASIC program.

While it seems a simple matter to save W in any RAM register, it is
actually somewhat more complicated.  The problem occurs in that you
have no way of knowing what register bank you are pointing to when the
interrupt happens.  If you have reserved a location in Bank0 and the
current register pointers are set to Bank1, for example, you could
overwrite an unintended location.  Therefore you must reserve a RAM
register location in each bank of the device at the same offset.

As an example, let's choose the 16C74(A).  It has 2 banks of RAM
registers starting at $20 and $A0 respectively.  To be safe, we need to
reserve the same location in each bank.  In this case we will choose the
first location in each bank.  A special construct has been added to the
VAR command to allow this:



PICBASIC PRO Compiler

187

wsave Var Byte $20 System
wsave1 Var Byte $a0 System

This instructs the compiler to place the variable at a particular location in
RAM.  In this manner, if the save of W "punches through" to another
bank, it will not corrupt other data.

The interrupt routine should be as short and fast as you can possibly
make it.  If it takes too long to execute, the Watchdog Timer could
timeout and really make a mess of things.

The routine should end with an Retfie instruction to return from the
interrupt and allow the processor to pick up where it left off in your
PICBASIC PRO program.

A good place to put the assembly language interrupt handler is at the
very beginning of your PICBASIC PRO program.  A GOTO needs to be
inserted before it to make sure it won’t be executed when the program
starts.  See the example below for a demonstration of this.

If a 14-bit core PIC MCU has more than 2K of code space, an interrupt
stub is automatically added that saves the W, STATUS and PCLATH
registers into the variables wsave, ssave and psave, before going to your
interrupt handler.  Storage for these variables must be allocated in the
BASIC program:

wsave Var Byte $20 System
wsave1 Var Byte $a0 System ‘ If device has

RAM in bank1
wsave2 Var Byte $120 System ‘ If device has

RAM in bank2
wsave3 Var Byte $1a0 System ‘ If device has

RAM in bank3
ssave Var Byte Bank0 System
psave Var Byte Bank0 System

In any case, you must restore these registers at the end of your
assembler interrupt handler.  If the 14-bit core PIC MCU has 2K or less of
code space, or it is an PIC18Xxxxx device, the registers are not saved. 
Your interrupt handler must save and restore any used registers.

Finally, you need to tell PBP that you are using an assembly language
interrupt handler and where to find it.  This is accomplished with a
DEFINE:



PICBASIC PRO Compiler

188

DEFINE INTHAND Label

For PIC18Xxxxx parts, an additional DEFINE allows assigning the low
priority interrupt handler label:

DEFINE INTLHAND Label

Label is the beginning of your interrupt routine.  PBP will place a jump to
this Label at location 4 in the PIC MCU.

' Assembly language interrupt example

led Var PORTB.1

wsave Var Byte $20 System
ssave Var Byte Bank0 System
psave Var Byte Bank0 System

Goto start ' Skip around interrupt handler

‘ Define interrupt handler
define INTHAND myint

‘ Assembly language interrupt handler
Asm
; Save W, STATUS and PCLATH registers
myint movwf wsave ; <= 2K only

swapf STATUS, W ; <= 2K only
clrf STATUS ; <= 2K only
movwf ssave ; <= 2K only
movf PCLATH, W ; <= 2K only
movwf psave ; <= 2K only

; Insert interrupt code here
; Save and restore FSR if used

bsf _led ; Turn on LED (for example)

; Restore PCLATH, STATUS and W registers
movf psave, W
movwf PCLATH
swapf ssave, W
movwf STATUS
swapf wsave, F
swapf wsave, W



PICBASIC PRO Compiler

189

retfie
Endasm

‘ PICBASIC PRO program starts here
start: Low led ‘ Turn LED off

‘ Enable interrupt on PORTB.0
INTCON = %10010000

loop: Goto loop ‘ Wait here till interrupted



PICBASIC PRO Compiler

190



PICBASIC PRO Compiler

191

10.  PICBASIC PRO / PICBASIC / Stamp Differences

Compatibility is a two-edged sword.  And then there is the pointy end. 
PICBASIC PRO has made some concessions to usability and code size. 
Therefore we call it “BASIC Stamp like” rather than BASIC Stamp
compatible.  PBP has most of the BASIC Stamp I and II instruction set
and syntax.  However there are some significant differences.

The following sections discuss the implementation details of PBP
programs that might present problems.  It is hoped that if you do
encounter problems, these discussions will help illuminate the differences
and possible solutions.

10.1.  Execution Speed

The largest potential problem is speed.  Without the overhead of reading
instructions from the serial EEPROM, many PBP instructions (such as
GOTO and GOSUB) execute hundreds of times faster than their BASIC
Stamp equivalents.  While in many cases this is a benefit, programs
whose timing has been developed empirically may experience problems.

The solution is simple - good programs don't rely on statement timing
such as FOR..NEXT loops.  Whenever possible, a program should use
handshaking and other non-temporal synchronization methods.  If delays
are needed, statements specifically generating delays (PAUSE, PAUSEUS,
NAP or SLEEP) should be used.

10.2.  Digital I/O

Unlike the BASIC Stamp, PBP programs operate directly on the PORT
and TRIS registers.  While this has speed and RAM/ROM size
advantages, there is one potential drawback.

Some of the I/O commands (e.g. TOGGLE and PULSOUT) perform read-
modify-write operations directly on the PORT register.  If two such
operations are performed too close together and the output is driving an
inductive or capacitive load, it is possible the operation will fail.

Suppose, for example, that a speaker is driven though a 10uF cap (just
as with the SOUND command).  Also suppose the pin is initially low and
the programmer is attempting to generate a pulse using TOGGLE
statements.  The first command reads the pin's low level and outputs its



PICBASIC PRO Compiler

192

complement. The output driver (which is now high) begins to charge the
cap.  If the second operation is performed too quickly, it still reads the
pin's level as low, even though the output driver is high.  As such, the
second operation will also drive the pin high.

In practice, this is not much of a problem.  And those commands
designed for these types of interfacing (SOUND and POT, for example)
have built-in protection.  This problem is not specific to PBP programs. 
This is a common problem for PIC MCU (and other microcontroller)
programs and is one of the realities of programming hardware directly.

10.3.  Low Power Instructions

When the Watchdog Timer time-out wakes a PIC MCU from sleep mode,
execution resumes without disturbing the state of the I/O pins.  For
unknown reasons, when the BASIC Stamp resumes execution after a low
power instruction (NAP or SLEEP), the I/O pins are disturbed for
approximately 18 mSec.  PBP programs make use of the PIC's I/O
coherency.  The NAP and SLEEP instructions do not disturb the I/O pins.

10.4.  Missing PC Interface

Since PBP generated programs run directly on a PIC MCU, there is no
need for the Stamp's PC interface pins (PCO and PCI).  The lack of a PC
interface does introduce some differences.

Without the Stamp’s IDE running on a PC, there is no place to send
debugging information.  Debugging can still be accomplished by using
one of the serial output instructions like DEBUG or SEROUT in conjunction
with a terminal program running on the PC such as Hyperterm.

Without the PC to wake the PIC MCU from an END or STOP statement, it
remains idle until /MCLR is lowered, an interrupt occurs or power is
cycled.

10.5.  No Automatic Variables

The PICBASIC PRO Compiler does not automatically create any
variables like B0 or W0.  They must be defined using VAR.  Two files are
provided: BS1DEFS.BAS and BS2DEFS.BAS that define the standard
BS1 or BS2 variables.  However, it is recommended that you assign your
own variables with meaningful names rather than using these files.



PICBASIC PRO Compiler

193

10.6.  No Nibble Variable Types

The BS2's nibble variable type is not implemented in the PICBASIC PRO
Compiler.  As PBP allows many more variables than a BS2, simply
changing nibble variable types to bytes will work in many cases.

10.7.  No DIRS

The BASIC Stamp variable names Dirs, Dirh, Dirl and Dir0-Dir15
are not defined and should not be used with the PICBASIC PRO
Compiler.  TRIS should be used instead, but has the opposite state of
Dirs.

This does not work in PICBASIC PRO:

Dir0 = 1 ‘ Doesn’t set pin PORTB.0 to output

Do this instead:

TRISB.0 = 0 ‘ Set pin PORTB.0 to output

or simply use a command that automatically sets the pin direction.

10.8.  No Automatic Zeroing of Variables

The BASIC Stamp sets all the variables and registers to 0 when a
program starts.  This is not automatically done when a PBP program
starts.  In general, the variables should be initialized in the program to an
appropriate state.  Alternatively, CLEAR can be used to zero all the
variables when a program starts.

10.9.  Math Operators

Mathematical expressions in PBP have precedence of operation.  This
means they are not evaluated in strict left to right order as they are in the
BASIC Stamp and original PICBASIC Compiler.  This precedence means
that multiplication and division are done before adds and subtracts, for
example.

Parenthesis should be used to group operations into the order in which
they are to be performed.  In this manner, there will be no doubt about
the order of the operations.  The following table list the operators in
hierarchal order:



PICBASIC PRO Compiler

194

Highest Precedence

( )

NOT

~

-

ABS COS DCD NCD SIN SQR

* 

**

*/

/

//

+ 

-

<<

>>

MIN

MAX

DIG

REV

&

^

|

&/

/|

^/

&& AND

^^ XOR

|| OR

Lowest Precedence



PICBASIC PRO Compiler

195

10.10.  [ ] Versus ( )

PBP uses square brackets, [], in statements where parenthesis, (),
were previously used.  This is more in keeping with BASIC Stamp II
syntax.

For example, the BS1 and original PICBASIC Compiler SEROUT
instruction looks something like:

Serout 0,T2400,(B0)

The PICBASIC PRO Compiler SEROUT instruction looks like:

Serout 0,T2400,[B0]

Any instructions that previously used parenthesis in their syntax should
be changed to include square brackets instead.

10.11.  ABS

ABS works slightly differently than on the Stamp in that it will take the
absolute value of a byte as well as a word and long.

10.12.  DATA, EEPROM, READ and WRITE

The BASIC Stamp allows serial EEPROM space not used for program
storage to store non-volatile data.  Since PBP programs execute directly
from the PIC MCU's ROM space, EEPROM storage must be
implemented in some other manner.

The PIC16F84 (the default target for PBP programs) has 64 bytes of on-
chip EEPROM.  PBP programs may use this for EEPROM operations
and supports the Stamp's DATA, EEPROM, READ and WRITE commands. 
Many other PIC MCUs have up to 1024 bytes of EEPROM space.

To access off-chip non-volatile data storage, the I2CREAD and
I2CWRITE instructions have been added.  These instructions allow 2-
wire communications with serial EEPROMs like Microchip Technology’s
24LC01B.



PICBASIC PRO Compiler

196

READ and WRITE will not work on devices with on-chip I2C interfaced
serial EEPROM like the PIC12CE67x and PIC16CE62x parts.  Use the
I2CREAD and I2CWRITE instructions instead.

10.13.  DEBUG

DEBUG in PBP is not a special case of SEROUT as it is on the Stamps.  It
has its own much shorter routine that works with a fixed pin and baud
rate.  It can be used in the same manner to send debugging information
to a terminal program or other serial device.

DEBUG sends serial data out on PORTB, pin 0 at 2400 baud, unless
otherwise DEFINEd.

Question marks (?) in DEBUG statements are ignored.  The modifier ASC?
Is not supported and should not be used.

10.14.  FOR..NEXT

The BS2 automatically sets the direction of the STEP for a FOR..NEXT
loop.  If the ending value is smaller than the starting value and a STEP
value is not specified, -1 is assumed.  PICBASIC PRO always defaults to
1 if a STEP value is not specified.  If a STEP of -1 is desired to make the
loop count backwards, it must be specified:

For i = 10 To 1 Step -1

10.15.  GOSUB and RETURN

Subroutines are implemented via the GOSUB and RETURN statements. 
User variable W6 is used by the BS1 as a four nibble stack.  Thus, Stamp
programs may have up to 16 GOSUBs and subroutines can be nested up
to four levels deep.

The PIC MCUs have Call and Return instructions as well as an eight level
stack.  PBP programs make use of these instructions and may use four
levels of this stack, with the other four levels being reserved for library
routines. Thus, W6 is unused, subroutines may still be nested up to four
levels deep (12 for PIC17Cxxx and 27 for PIC18Xxxxx) and the number
of GOSUBs is limited only by the PIC MCU's code space.



PICBASIC PRO Compiler

197

10.16.  I2CREAD and I2CWRITE

The I2CREAD and I2CWRITE commands differ from the original
PICBASIC Compiler’s I2CIN and I2COUT commands.  The most
obvious difference is that the data and clock pin numbers are now
specified as part of the command.  They are no longer fixed to specific
pins.

The other difference is that the control byte format has changed.  You no
longer set the address size as part of the control byte.  Instead, the
address size is determined by the type of the address variable.  If a byte-
sized variable is used, an 8-bit address is sent.  If a word-sized variable is
used, a 16-bit address is sent.

10.17.  IF..THEN

The BASIC Stamps and the original PICBASIC compiler only allow a
label to be specified after an IF..THEN.  PICBASIC PRO additionally
allows an IF..THEN..ELSE..ENDIF construct as well as allowing
actual code to be executed as a result of an IF or ELSE.

10.18.  LOOKDOWN and LOOKUP

LOOKDOWN and LOOKUP use BS1 syntax.  LOOKDOWN2 and LOOKUP2 use
BS2 syntax.  LOOKDOWN and LOOKUP only support 8-bit constants in the
table, not variables as in the BS1.  You must use LOOKDOWN2 or
LOOKUP2 if variables are required in the table.

10.19.  MAX and MIN

The MAX and MIN operator’s function have been altered somewhat from
the way they work on the Stamp and the original PICBASIC Compiler.

MAX will return the maximum of two values.  MIN will return the minimum
of two values.  This corresponds more closely to most other BASICs and
does not have the 0 and 65535 limit problems of the Stamp’s MIN and
MAX instructions.

In most cases, you need only change MIN to MAX and MAX to MIN in your
Stamp programs for them to work properly with PBP.



PICBASIC PRO Compiler

198

10.20.  SERIN and SEROUT

SERIN and SEROUT use BS1 syntax.  SERIN2 and SEROUT2 use BS2
syntax.  A BS2 style timeout has been added to the SERIN command.

SERIN and SEROUT have been altered to run up to 9600 baud from the
BS1 limit of 2400 baud.  This has been accomplished by replacing the
little used rate of 600 baud with 9600 baud.  Modes of T9600, N9600,
OT9600 and ON9600 may now be used.

600 baud is no longer available and will cause a compilation error if an
attempt is made to use it.

10.21.  SLEEP

PBP’s SLEEP command is based solely on the Watchdog Timer.  It is not 
calibrated using the system clock oscillator.  This is because of the affect
Watchdog Timer resets have on the PIC MCU.

Whenever the PIC MCU was reset during SLEEP calibration, it altered the
states of some of the internal registers.  For smaller PIC MCUs with few
registers, these registers could be saved before and restored after
calibration resets.  However, since PBP may be used on many different
PIC MCUs with many registers that are altered upon reset, this save and
restore proved to be too unwieldy.

Therefore SLEEP runs in an uncalibrated mode based strictly upon the
accuracy of the Watchdog Timer.  This ensures the stability of the PIC
MCU registers and I/O ports.  However, since the Watchdog Timer is
driven by an internal R/C oscillator, its period can vary significantly based
on temperature and individual chip variations.  If greater accuracy is
needed, PAUSE, which is not a low-power command, should be used.



PICBASIC PRO Compiler

199

Appendix A

Serin2/Serout2 Mode Examples

Baud Rate BIT 15
(Output)

BIT 14
(Conversion)

BIT 13
(Parity)

Mode Number

300 Driven True None 3313

300 Driven True Even* 11505

300 Driven Inverted None 19697

300 Driven Inverted Even* 27889

300 Open True None 36081

300 Open True Even* 44273

300 Open Inverted None 52465

300 Open Inverted Even* 60657

1200 Driven True None 813

1200 Driven True Even* 9005

1200 Driven Inverted None 17197

1200 Driven Inverted Even* 25389

1200 Open True None 33581

1200 Open True Even* 41773

1200 Open Inverted None 49965

1200 Open Inverted Even* 58157

2400 Driven True None 396

2400 Driven True Even* 8588

2400 Driven Inverted None 16780

2400 Driven Inverted Even* 24972

2400 Open True None 33164



PICBASIC PRO Compiler

Baud Rate BIT 15
(Output)

BIT 14
(Conversion)

BIT 13
(Parity)

Mode Number

200

2400 Open True Even* 41356

2400 Open Inverted None 49548

2400 Open Inverted Even* 57740

9600** Driven True None 84

9600** Driven True Even* 8276

9600** Driven Inverted None 16468

9600** Driven Inverted Even* 24660

9600** Open True None 32852

9600** Open True Even* 41044

9600** Open Inverted None 49236

9600** Open Inverted Even* 57428

19200** Driven True None 32

19200** Driven True Even* 8224

19200** Driven Inverted None 16416

19200** Driven Inverted Even* 24608

19200** Open True None 32800

19200** Open True Even* 40992

19200** Open Inverted None 49184

19200** Open Inverted Even* 57376

*For odd parity, add: DEFINE  SER2_ODD  1.
**Oscillator faster than 4MHz may be required.



PICBASIC PRO Compiler

201

Appendix B

Defines

DEFINE ADC_BITS 8 ‘Number of bits in Adcin
result

DEFINE ADC_CLOCK 3 ‘ADC clock source (rc = 3)
DEFINE ADC_SAMPLEUS 50 ‘ADC sampling time in

microseconds
DEFINE BUTTON_PAUSE 10 ‘Button debounce delay in ms
DEFINE CCP1_REG PORTC ‘Hpwm channel 1 pin port
DEFINE CCP1_BIT 2 ‘Hpwm channel 1 pin bit
DEFINE CCP2_REG PORTC ‘Hpwm channel 2 pin port
DEFINE CCP2_BIT 1 ‘Hpwm channel 2 pin bit
DEFINE CCP3_REG PORTG ‘Hpwm channel 3 pin port
DEFINE CCP3_BIT 0 ‘Hpwm channel 3 pin bit
DEFINE CCP4_REG PORTG ‘Hpwm channel 4 pin port
DEFINE CCP4_BIT 3 ‘Hpwm channel 4 pin bit
DEFINE CCP5_REG PORTG ‘Hpwm channel 5 pin port
DEFINE CCP5_BIT 4 ‘Hpwm channel 5 pin bit
DEFINE CHAR_PACING 1000 ‘Serout character pacing in us
DEFINE DEBUG_REG PORTB ‘Debug pin port
DEFINE DEBUG_BIT 0 ‘Debug pin bit
DEFINE DEBUG_BAUD 2400 ‘Debug baud rate
DEFINE DEBUG_MODE 1 ‘Debug mode: 0 = True, 1 =

Inverted
DEFINE DEBUG_PACING 1000 ‘Debug character pacing in us
DEFINE DEBUGIN_REG PORTB ‘Debugin pin port
DEFINE DEBUGIN_BIT 0 ‘Debugin pin bit
DEFINE DEBUGIN_MODE 1 ‘Debugin mode: 0 = True, 1 =

Inverted
DEFINE HPWM2_TIMER 1 ‘Hpwm channel 2 timer select
DEFINE HPWM3_TIMER 1 ‘Hpwm channel 3 timer select
DEFINE HSER_BAUD 2400 ‘Hser baud rate
DEFINE HSER_SPBRG 25 ‘Hser spbrg init
DEFINE HSER_RCSTA 90h ‘Hser receive status init
DEFINE HSER_TXSTA 20h ‘Hser transmit status init
DEFINE HSER_EVEN 1 ‘Use only if even parity

desired
DEFINE HSER_ODD 1 ‘Use only if odd parity

desired
DEFINE HSER_BITS 9 ‘Use for 8 bits + parity
DEFINE HSER_CLROERR 1 ‘Automatically clear Hserin

overflow errors
DEFINE HSER_PORT 1 ‘Hser port to use on devices

with more than one
DEFINE HSER2_BAUD 2400 ‘Hser2 baud rate
DEFINE HSER2_SPBRG 25 ‘Hser2 spbrg2 init
DEFINE HSER2_RCSTA 90h ‘Hser2 receive status init
DEFINE HSER2_TXSTA 20h ‘Hser2 transmit status init
DEFINE HSER2_EVEN 1 ‘Use only if even parity

desired
DEFINE HSER2_ODD 1 ‘Use only if odd parity

desired



PICBASIC PRO Compiler

202

DEFINE HSER2_BITS 9 ‘Use for 8 bits + parity
DEFINE HSER2_CLROERR 1 ‘Automatically clear Hserin

overflow errors
DEFINE I2C_HOLD 1 ‘Pause I2C transmission while

clock held low
DEFINE I2C_INTERNAL 1 ‘Use for internal EEPROM on

16CExxx and 12CExxx
DEFINE I2C_SCLOUT 1 ‘Set serial clock bipolar

instead of open-collector
DEFINE I2C_SLOW 1 ‘Use for >8MHz OSC with

standard speed devices
DEFINE I2C_SCL PORTA,1 ‘For 12-bit core only
DEFINE I2C_SDA PORTA,0 ‘For 12-bit core only
DEFINE INTHAND Label ‘Assign assembler interrupt

handler label
DEFINE INTLHAND Label ‘Assign assembler low priority

interrupt handler label for
PIC18Xxxxx

DEFINE LCD_DREG PORTA ‘LCD data port
DEFINE LCD_DBIT 0 ‘LCD data starting bit 0 or 4
DEFINE LCD_RSREG PORTA ‘LCD register select port
DEFINE LCD_RSBIT 4 ‘LCD register select bit
DEFINE LCD_EREG PORTB ‘LCD enable port
DEFINE LCD_EBIT 3 ‘LCD enable bit
DEFINE LCD_RWREG PORTE ‘LCD read/write port
DEFINE LCD_RWBIT 2 ‘LCD read/write bit
DEFINE LCD_BITS 4 ‘LCD bus size 4 or 8
DEFINE LCD_LINES 2 ‘Number lines on LCD
DEFINE LCD_COMMANDUS 2000 ‘Command delay time in us
DEFINE LCD_DATAUS 50 ‘Data delay time in us
DEFINE LOADER_USED 1 ‘Bootloader is being used
DEFINE NO_CLRWDT 1 ‘Don’t insert CLRWDTs
DEFINE OSC 4 ‘Oscillator speed in MHz:

3(3.58) 4 8 10 12 16 20 24 25
32 33 40 48 64

DEFINE OSCCAL_1K 1 ‘Set OSCCAL for 1K 12Xxxx
DEFINE OSCCAL_2K 1 ‘Set OSCCAL for 2K 12Xxxx
DEFINE PULSIN_MAX 65535 ‘Maximum Pulsin/ Rctime count
DEFINE RESET_ORG 0h ‘Change reset address for

PIC18Xxxxx
DEFINE SER2_BITS 8 ‘Set number of data bits for

Serin2 and Serout2
DEFINE SER2_ODD 1 ‘Set odd parity for Serin2 and

Serout2
DEFINE SHIFT_PAUSEUS 50 ‘Slow down the Shiftin and

Shiftout clock
DEFINE USE_LFSR 1 ‘Use PIC18Xxxxx LFSR

instruction
DEFINE WRITE_INT 1 ‘Disable/enable global

interrupts in Write
DEFINE XINXLAT_OFF 1 ‘Don’t translate Xin commands

to BS2 format
DEFINE XOUTXLAT_OFF 1 ‘Don’t translate Xout commands

to BS2 format



PICBASIC PRO Compiler

203

Appendix C

Reserved Words

(See section 7.4. for important information about additional keywords.)

ABS 
ADCIN 
AND 
ANDNOT 
ASM 
AUXIO 
BANK0 
BANK1 
BANK2 
BANK3 
BANK4 
BANK5 
BANK6 
BANK7 
BANK8 
BANK9 
BANK10 
BANK11 
BANK12 
BANK13 
BANK14 
BANK15 
BANKA 
BIN 
BIN1 
BIN2 
BIN3 
BIN4 
BIN5 
BIN6 
BIN7 
BIN8 
BIN9 
BIN10 
BIN11 
BIN12 
BIN13 
BIN14 
BIN15 
BIN16 
BIN17 
BIN18 
BIN19 
BIN20 
BIN21 
BIN22

BIN23
BIN24 
BIN25 
BIN26 
BIN27 
BIN28 
BIN29 
BIN30 
BIN31 
BIN32 
BIT 
BIT0 
BIT1 
BIT2 
BIT3 
BIT4 
BIT5 
BIT6 
BIT7 
BIT8 
BIT9 
BIT10 
BIT11 
BIT12 
BIT13 
BIT14 
BIT15 
BIT16 
BIT17 
BIT18 
BIT19 
BIT20 
BIT21 
BIT22 
BIT23 
BIT24 
BIT25 
BIT26 
BIT27 
BIT28 
BIT29 
BIT30 
BIT31 
BRANCH 
BRANCHL

BUTTON 
BYTE 
BYTE0 
BYTE1 
BYTE2 
BYTE3 
CALL 
CASE 
CLEAR 
CLEARWDT 
CON 
COS 
COUNT 
DATA 
DCD 
DEBUG 
DEBUGIN 
DEC 
DEC1 
DEC2 
DEC3 
DEC4 
DEC5 
DEC6 
DEC7 
DEC8 
DEC9 
DEC10 
DEFINE 
DIG 
DISABLE 
DIV32 
DTMFOUT 
EEPROM 
ELSE 
ENABLE 
END 
ENDASM 
ENDIF 
ERASECODE 
EXT 
FLAGS
FOR 
FREQOUT 
GET 
GOP

GOSUB 
GOTO 
HEX 
HEX1 
HEX2 
HEX3 
HEX4 
HEX5 
HEX6 
HEX7 
HEX8 
HIGH 
HIGHBYTE 
HIGHWORD 
HPWM 
HSERIN
HSERIN2 
HSEROUT 
HSEROUT2
I2CREAD 
I2CWRITE 
IBIN 
IBIN1 
IBIN2 
IBIN3 
IBIN4 
IBIN5 
IBIN6 
IBIN7 
IBIN8 
IBIN9 
IBIN10 
IBIN11 
IBIN12 
IBIN13 
IBIN14 
IBIN15 
IBIN16 
IBIN17 
IBIN18 
IBIN19 
IBIN20 
IBIN21 
IBIN22
IBIN23
IBIN24 

IBIN25 
IBIN26 
IBIN27 
IBIN28 
IBIN29 
IBIN30 
IBIN31 
IBIN32 
IDEC 
IDEC1 
IDEC2 
IDEC3 
IDEC4 
IDEC5 
IDEC6 
IDEC7 
IDEC8 
IDEC9 
IDEC10 
IF 
IHEX 
IHEX1 
IHEX2 
IHEX3 
IHEX4 
IHEX5 
IHEX6 
IHEX7 
IHEX8 
INCLUDE 
INPUT 
INTERRUPT 
IS 
ISBIN 
ISBIN1 
ISBIN2 
ISBIN3 
ISBIN4 
ISBIN5 
ISBIN6 
ISBIN7 
ISBIN8 
ISBIN9 
ISBIN10 
ISBIN11 
ISBIN12 



PICBASIC PRO Compiler

204

ISBIN13 
ISBIN14 
ISBIN15 
ISBIN16 
ISBIN17 
ISBIN18 
ISBIN19 
ISBIN20 
ISBIN21 
ISBIN22
ISBIN23
ISBIN24 
ISBIN25 
ISBIN26 
ISBIN27 
ISBIN28 
ISBIN29 
ISBIN30 
ISBIN31 
ISBIN32 
ISDEC 
ISDEC1 
ISDEC2 
ISDEC3 
ISDEC4 
ISDEC5 
ISDEC6 
ISDEC7 
ISDEC8 
ISDEC9 
ISDEC10 
ISHEX 
ISHEX1 
ISHEX2 
ISHEX3 
ISHEX4 
ISHEX5 
ISHEX6 
ISHEX7 
ISHEX8 
LCDIN 
LCDOUT 
LET 
LIBRARY 
LONG 
LOOKDOWN 
LOOKDOWN2 
LOOKUP 
LOOKUP2 
LOW
LOWBYTE 
LOWWORD 
MAX 
MIN 

MOD 
NAP 
NCD 
NEXT 
NOT 
OFF 
ON 
OR 
ORNOT 
OUTPUT 
OWIN 
OWOUT 
PAUSE 
PAUSEUS 
PEEK 
PEEKCODE 
POKE 
POKECODE 
POLLIN 
POLLMODE 
POLLOUT 
POLLRUN 
POLLWAIT 
POT 
PULSIN 
PULSOUT 
PUT 
PWM 
R0
R1
R2
R3
R4
R5
R6
R7
R8
RANDOM 
RB1**
RB2**
RCTIME 
READ 
READCODE 
REM 
REP 
REPEAT 
RESUME 
RETURN 
REV 
REVERSE 
RM1
RM2
RR1
RR2

RS1***
RS2***
SBIN 
SBIN1 
SBIN2 
SBIN3 
SBIN4 
SBIN5 
SBIN6 
SBIN7 
SBIN8 
SBIN9 
SBIN10 
SBIN11 
SBIN12 
SBIN13 
SBIN14 
SBIN15 
SBIN16 
SBIN17 
SBIN18 
SBIN19 
SBIN20 
SBIN21 
SBIN22
SBIN23
SBIN24 
SBIN25 
SBIN26 
SBIN27 
SBIN28 
SBIN29 
SBIN30 
SBIN31 
SBIN32 
SDEC 
SDEC1 
SDEC2 
SDEC3 
SDEC4 
SDEC5 
SDEC6 
SDEC7 
SDEC8 
SDEC9 
SDEC10 
SELECT 
SERIN 
SERIN2 
SEROUT 
SEROUT2 
SHEX 
SHEX1 
SHEX2 

SHEX3 
SHEX4 
SHEX5 
SHEX6 
SHEX7 
SHEX8 
SHIFTIN 
SHIFTOUT 
SIN 
SKIP 
SLEEP 
SOFT_STACK*
SOFT_STACK
_PTR*
SOUND 
SQR 
STEP 
STOP 
STR 
SWAP 
SYMBOL 
SYSTEM 
THEN 
TO 
TOGGLE 
UNTIL 
USBIN 
USBINIT 
USBOUT 
USBSERVICE
VAR 
WAIT 
WAITSTR 
WEND 
WHILE 
WORD 
WORD0 
WORD1 
WRITE 
WRITECODE 
XIN 
XOR 
XORNOT 
XOUT 

*12-bit core
**PIC17
***PIC18



PICBASIC PRO Compiler

205

Appendix D

ASCII Table

ASCII Control Characters

Decimal Hex ASCII Function Key

0 0 NUL (null) Ctrl-@

1 1 SOH (start of heading) Ctrl-A

2 2 STX (start of text) Ctrl-B

3 3 ETX (end of text) Ctrl-C

4 4 EOT (end of transmission) Ctrl-D

5 5 ENQ (enquiry) Ctrl-E

6 6 ACK (acknowledge) Ctrl-F

7 7 BEL (bell) Ctrl-G

8 8 BS (backspace) Ctrl-H

9 9 HT (horizontal tab) Ctrl-I

10 A LF (line feed) Ctrl-J

11 B VT (vertical tab) Ctrl-K

12 C FF (form feed) Ctrl-L

13 D CR (carriage return) Ctrl-M

14 E SO (shift out) Ctrl-N

15 F SI (shift in) Ctrl-O

16 10 DLE (data link escape) Ctrl-P

17 11 DC1 (device control 1) Ctrl-Q

18 12 DC2 (device control 2) Ctrl-R

19 13 DC3 (device control 3) Ctrl-S

20 14 DC4 (device control 4) Ctrl-T



PICBASIC PRO Compiler

Decimal Hex ASCII Function Key

206

21 15 NAK (negative acknowledge) Ctrl-U

22 16 SYN (synchronous idle) Ctrl-V

23 17 ETB (end of trans. block) Ctrl-W

24 18 CAN (cancel) Ctrl-X

25 19 EM (end of medium) Ctrl-Y

26 1A SUB (substitute) Ctrl-Z

27 1B ESC (escape) Ctrl-[

28 1C FS (file separator) Ctrl-\

29 1D GS (group separator) Ctrl-]

30 1E RS (record separator) Ctrl-^

31 1F US (unit separator) Ctrl-_



PICBASIC PRO Compiler

207

Standard ASCII Character Set

Decimal Hex Display/
Key

Decimal Hex Display/
Key

Decimal Hex Display
/Key

32 20 Space 64 40 @ 96 60 `

33 21 ! 65 41 A 97 61 a

34 22 " 66 42 B 98 62 b

35 23 # 67 43 C 99 63 c

36 24 $ 68 44 D 100 64 d

37 25 % 69 45 E 101 65 e

38 26 & 70 46 F 102 66 f

39 27 ' 71 47 G 103 67 g

40 28 ( 72 48 H 104 68 h

41 29 ) 73 49 I 105 69 i

42 2A * 74 4A J 106 6A j

43 2B + 75 4B K 107 6B k

44 2C , 76 4C L 108 6C l

45 2D - 77 4D M 109 6D m

46 2E . 78 4E N 110 6E n

47 2F / 79 4F O 111 6F o

48 30 0 80 50 P 112 70 p

49 31 1 81 51 Q 113 71 q

50 32 2 82 52 R 114 72 r

51 33 3 83 53 S 115 73 s

52 34 4 84 54 T 116 74 t

53 35 5 85 55 U 117 75 u

54 36 6 86 56 V 118 76 v

55 37 7 87 57 W 119 77 w



PICBASIC PRO Compiler

Decimal Hex Display/
Key

Decimal Hex Display/
Key

Decimal Hex Display
/Key

208

56 38 8 88 58 X 120 78 x

57 39 9 89 59 Y 121 79 y

58 3A : 90 5A Z 122 7A z

59 3B ; 91 5B [ 123 7B {

60 3C < 92 5C \ 124 7C |

61 3D = 93 5D ] 125 7D }

62 3E > 94 5E ^ 126 7E ~

63 3F ? 95 5F _ 127 7F DEL



PICBASIC PRO Compiler

209

Appendix E

Contact Information

Technical support and sales may be reached at:

microEngineering Labs, Inc.
Box 60039
Colorado Springs CO 80960-0039
(719) 520-5323
(719) 520-1867 fax
http://www.melabs.com
email:support@melabs.com

PIC® MCU data sheets and literature may be obtained from:

Microchip Technology Inc.
2355 W. Chandler Blvd.
Chandler AZ 85224-6199
(480) 792-7200
(480) 792-7277 fax
http://www.microchip.com
email:literature@microchip.com



READ THE FOLLOWING TERMS AND CONDITIONS CAREFULLY

BEFORE OPENING THIS PACKAGE.
microEngineering Labs, Inc. ("the Company") is willing to license the
enclosed software to the purchaser of the software ("Licensee") only on
the condition that Licensee accepts all of the terms and conditions set
forth below.  By opening this sealed package, Licensee is agreeing to
be bound by these terms and conditions.

Disclaimer of Liability

THE COMPANY DISCLAIMS ALL WARRANTIES, EXPRESS OR

IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED

WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE AND THE

IMPLIED WARRANTY OF MERCHANTABILITY.  IN NO EVENT SHALL

THE COMPANY OR ITS EMPLOYEES, AGENTS, SUPPLIERS OR

CONTRACTORS BE LIABLE FOR ANY INCIDENTAL, INDIRECT,

SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN

CONNECTION WITH LICENSE GRANTED UNDER THIS

AGREEMENT, INCLUDING WITHOUT LIMITATION, LOST PROFITS,

DOWNTIME, GOODWILL, DAMAGE TO OR REPLACEMENT OF

EQUIPMENT OR PROPERTY, OR ANY COSTS FOR RECOVERING,

REPROGRAMMING OR REPRODUCING ANY DATA USED WITH THE

COMPANY'S PRODUCTS.

Software License

In consideration of Licensee's payment of the license fee, which is part of
the price Licensee paid for this product, and Licensee's agreement to
abide by the terms and conditions on this page, the Company grants
Licensee a nonexclusive right to use and display the copy of the enclosed
software on a single computer at a single location.  Licensee owns only
the enclosed media on which the software is recorded or fixed, and the
Company retains all right, title and ownership (including the copyright) to
the software recorded on the original media copy and all subsequent
copies of the software.  Licensee may not network the software or
otherwise use it on more than one computer terminal at the
same time.  Copies may only be made for archival or backup purposes. 
The enclosed software is licensed only to the Licensee and may not be
transferred to anyone else, nor may copies be given to anyone else.  Any
violation of the terms and conditions of this software license shall result in
the immediate termination of the license.


